Blame view

build4/epsilon-master/poincare/src/print_float.cpp 8.57 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
  #include <poincare/print_float.h>
  #include <poincare/preferences.h>
  #include <poincare/ieee754.h>
  extern "C" {
  #include <assert.h>
  #include <stdlib.h>
  #include <string.h>
  #include <float.h>
  }
  #include <cmath>
  #include <ion.h>
  #include <stdio.h>
  
  namespace Poincare {
  
  void PrintFloat::printBase10IntegerWithDecimalMarker(char * buffer, int bufferLength, Integer i, int decimalMarkerPosition) {
    /* The decimal marker position is always preceded by a char, thus, it is never
     * in first position. When called by convertFloatToText, the buffer length is
     * always > 0 as we asserted a minimal number of available chars. */
    assert(bufferLength > 0 && decimalMarkerPosition != 0);
    char tempBuffer[PrintFloat::k_maxFloatBufferLength];
    int intLength = i.writeTextInBuffer(tempBuffer, PrintFloat::k_maxFloatBufferLength);
    int firstDigitChar = tempBuffer[0] == '-' ? 1 : 0;
    for (int k = bufferLength-1; k >= firstDigitChar; k--) {
      if (k == decimalMarkerPosition) {
        buffer[k] = '.';
        continue;
      }
      if (intLength > firstDigitChar) {
        buffer[k] = tempBuffer[--intLength];
        continue;
      }
      buffer[k] = '0';
    }
    if (firstDigitChar == 1) {
      buffer[0] = tempBuffer[0];
    }
  }
  
  template <class T>
  int PrintFloat::convertFloatToText(T f, char * buffer, int bufferSize,
      int numberOfSignificantDigits, Mode mode) {
    assert(numberOfSignificantDigits > 0);
    char tempBuffer[PrintFloat::k_maxFloatBufferLength];
    int requiredLength = convertFloatToTextPrivate(f, tempBuffer, numberOfSignificantDigits, mode);
    /* if the required buffer size overflows the buffer size, we first force the
     * display mode to scientific and decrease the number of significant digits to
     * fit the buffer size. If the buffer size is still to small, we only write
     * the beginning of the float and truncate it (which can result in a non sense
     * text) */
    if (mode == Mode::Decimal && requiredLength >= bufferSize) {
      requiredLength = convertFloatToTextPrivate(f, tempBuffer, numberOfSignificantDigits, Mode::Scientific);
    }
    if (requiredLength >= bufferSize) {
      int adjustedNumberOfSignificantDigits = numberOfSignificantDigits - requiredLength + bufferSize - 1;
      adjustedNumberOfSignificantDigits = adjustedNumberOfSignificantDigits < 1 ? 1 : adjustedNumberOfSignificantDigits;
      requiredLength = convertFloatToTextPrivate(f, tempBuffer, adjustedNumberOfSignificantDigits, Mode::Scientific);
    }
    requiredLength = requiredLength < bufferSize ? requiredLength : bufferSize-1;
    strlcpy(buffer, tempBuffer, bufferSize);
    return requiredLength;
  }
  
  template <class T>
  int PrintFloat::convertFloatToTextPrivate(T f, char * buffer, int numberOfSignificantDigits, Mode mode) {
    assert(numberOfSignificantDigits > 0);
    /*if (std::isinf(f)) {
      int currentChar = 0;
      if (f < 0) {
        buffer[currentChar++] = '-';
      }
      buffer[currentChar++] = 'i';
      buffer[currentChar++] = 'n';
      buffer[currentChar++] = 'f';
      buffer[currentChar] = 0;
      return currentChar;
    }*/
  
    if (std::isinf(f) || std::isnan(f)) {
      int currentChar = 0;
      buffer[currentChar++] = 'u';
      buffer[currentChar++] = 'n';
      buffer[currentChar++] = 'd';
      buffer[currentChar++] = 'e';
      buffer[currentChar++] = 'f';
      buffer[currentChar] = 0;
      return currentChar;
    }
  
    int exponentInBase10 = IEEE754<T>::exponentBase10(f);
  
    Mode displayMode = mode;
    if ((exponentInBase10 >= numberOfSignificantDigits || exponentInBase10 <= -numberOfSignificantDigits) && mode == Mode::Decimal) {
      displayMode = Mode::Scientific;
    }
  
    // Number of char available for the mantissa
    int availableCharsForMantissaWithoutSign = numberOfSignificantDigits + 1;
    int availableCharsForMantissaWithSign = f >= 0 ? availableCharsForMantissaWithoutSign : availableCharsForMantissaWithoutSign + 1;
  
    // Compute mantissa
    /* The number of digits in an mantissa is capped because the maximal int64_t
     * is 2^63 - 1. As our mantissa is an integer built from an int64_t, we assert
     * that we stay beyond this threshold during computation. */
    assert(availableCharsForMantissaWithoutSign - 1 < std::log10(std::pow(2.0f, 63.0f)));
  
    int numberOfDigitBeforeDecimal = exponentInBase10 >= 0 || displayMode == Mode::Scientific ?
                                     exponentInBase10 + 1 : 1;
  
    T unroundedMantissa = f * std::pow((T)10.0, (T)(availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal));
    T mantissa = std::round(unroundedMantissa);
  
    /* if availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal
     * is too big (or too small), mantissa is now inf. We handle this case by
     * using logarithm function. */
    if (std::isnan(mantissa) || std::isinf(mantissa)) {
      mantissa = std::round(std::pow(10, std::log10(std::fabs(f))+(T)(availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal)));
      mantissa = std::copysign(mantissa, f);
    }
    /* We update the exponent in base 10 (if 0.99999999 was rounded to 1 for
     * instance)
     * NB: the following if-condition would rather be:
     * "exponentBase10(unroundedMantissa) != exponentBase10(mantissa)",
     * however, unroundedMantissa can have a different exponent than expected
     * (ex: f = 1E13, unroundedMantissa = 99999999.99 and mantissa = 1000000000) */
    if (f != 0 && IEEE754<T>::exponentBase10(mantissa)-exponentInBase10 != availableCharsForMantissaWithoutSign - 1 - numberOfDigitBeforeDecimal) {
      exponentInBase10++;
    }
  
    // Update the display mode if the exponent changed
    if ((exponentInBase10 >= numberOfSignificantDigits || exponentInBase10 <= -numberOfSignificantDigits) && mode == Mode::Decimal) {
      displayMode = Mode::Scientific;
    }
  
    int decimalMarkerPosition = exponentInBase10 < 0 || displayMode == Mode::Scientific ?
      1 : exponentInBase10+1;
    decimalMarkerPosition = f < 0 ? decimalMarkerPosition+1 : decimalMarkerPosition;
  
    // Correct the number of digits in mantissa after rounding
    int mantissaExponentInBase10 = exponentInBase10 > 0 || displayMode == Mode::Scientific ? availableCharsForMantissaWithoutSign - 1 : availableCharsForMantissaWithoutSign + exponentInBase10;
    if (IEEE754<T>::exponentBase10(mantissa) >= mantissaExponentInBase10) {
      mantissa = mantissa/10;
    }
  
    int numberOfCharExponent = exponentInBase10 != 0 ? std::log10(std::fabs((T)exponentInBase10)) + 1 : 1;
    if (exponentInBase10 < 0){
      // If the exponent is < 0, we need a additional char for the sign
      numberOfCharExponent++;
    }
  
    // Supress the 0 on the right side of the mantissa
    Integer dividend = Integer((int64_t)std::fabs(mantissa));
    Integer quotient = Integer::Division(dividend, Integer(10)).quotient;
    Integer digit = Integer::Subtraction(dividend, Integer::Multiplication(quotient, Integer(10)));
    int minimumNumberOfCharsInMantissa = 1;
    while (digit.isZero() && availableCharsForMantissaWithoutSign > minimumNumberOfCharsInMantissa &&
        (availableCharsForMantissaWithoutSign > exponentInBase10+2 || displayMode == Mode::Scientific)) {
      mantissa = mantissa/10;
      availableCharsForMantissaWithoutSign--;
      availableCharsForMantissaWithSign--;
      dividend = quotient;
      quotient = Integer::Division(dividend, Integer(10)).quotient;
      digit = Integer::Subtraction(dividend, Integer::Multiplication(quotient, Integer(10)));
    }
  
    // Suppress the decimal marker if no fractional part
    if ((displayMode == Mode::Decimal && availableCharsForMantissaWithoutSign == exponentInBase10+2)
        || (displayMode == Mode::Scientific && availableCharsForMantissaWithoutSign == 2)) {
      availableCharsForMantissaWithSign--;
    }
  
    // Print mantissa
    assert(availableCharsForMantissaWithSign < PrintFloat::k_maxFloatBufferLength);
    PrintFloat::printBase10IntegerWithDecimalMarker(buffer, availableCharsForMantissaWithSign, Integer((int64_t)mantissa), decimalMarkerPosition);
    if (displayMode == Mode::Decimal || exponentInBase10 == 0) {
      buffer[availableCharsForMantissaWithSign] = 0;
      return availableCharsForMantissaWithSign;
    }
    // Print exponent
    assert(availableCharsForMantissaWithSign < PrintFloat::k_maxFloatBufferLength);
    buffer[availableCharsForMantissaWithSign] = Ion::Charset::Exponent;
    assert(numberOfCharExponent+availableCharsForMantissaWithSign+1 < PrintFloat::k_maxFloatBufferLength);
    PrintFloat::printBase10IntegerWithDecimalMarker(buffer+availableCharsForMantissaWithSign+1, numberOfCharExponent, Integer(exponentInBase10), -1);
    buffer[availableCharsForMantissaWithSign+1+numberOfCharExponent] = 0;
    return (availableCharsForMantissaWithSign+1+numberOfCharExponent);
  }
  
  template int PrintFloat::convertFloatToText<float>(float, char*, int, int, PrintFloat::Mode);
  template int PrintFloat::convertFloatToText<double>(double, char*, int, int, PrintFloat::Mode);
  
  }