Blame view

build4/epsilon-master/liba/src/external/openbsd/s_tanh.c 1.84 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  /* @(#)s_tanh.c 5.1 93/09/24 */
  /*
   * ====================================================
   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
   *
   * Developed at SunPro, a Sun Microsystems, Inc. business.
   * Permission to use, copy, modify, and distribute this
   * software is freely granted, provided that this notice 
   * is preserved.
   * ====================================================
   */
  
  /* Tanh(x)
   * Return the Hyperbolic Tangent of x
   *
   * Method :
   *				       x    -x
   *				      e  - e
   *	0. tanh(x) is defined to be -----------
   *				       x    -x
   *				      e  + e
   *	1. reduce x to non-negative by tanh(-x) = -tanh(x).
   *	2.  0      <= x <= 2**-55 : tanh(x) := x*(one+x)
   *					        -t
   *	    2**-55 <  x <=  1     : tanh(x) := -----; t = expm1(-2x)
   *					       t + 2
   *						     2
   *	    1      <= x <=  22.0  : tanh(x) := 1-  ----- ; t=expm1(2x)
   *						   t + 2
   *	    22.0   <  x <= INF    : tanh(x) := 1.
   *
   * Special cases:
   *	tanh(NaN) is NaN;
   *	only tanh(0)=0 is exact for finite argument.
   */
  
  #include "math.h"
  #include "math_private.h"
  
  static const double one=1.0, two=2.0, tiny = 1.0e-300;
  
  double
  tanh(double x)
  {
  	double t,z;
  	int32_t jx,ix;
  
      /* High word of |x|. */
  	GET_HIGH_WORD(jx,x);
  	ix = jx&0x7fffffff;
  
      /* x is INF or NaN */
  	if(ix>=0x7ff00000) { 
  	    if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
  	    else       return one/x-one;    /* tanh(NaN) = NaN */
  	}
  
      /* |x| < 22 */
  	if (ix < 0x40360000) {		/* |x|<22 */
  	    if (ix<0x3c800000) 		/* |x|<2**-55 */
  		return x*(one+x);    	/* tanh(small) = small */
  	    if (ix>=0x3ff00000) {	/* |x|>=1  */
  		t = expm1(two*fabs(x));
  		z = one - two/(t+two);
  	    } else {
  	        t = expm1(-two*fabs(x));
  	        z= -t/(t+two);
  	    }
      /* |x| > 22, return +-1 */
  	} else {
  	    z = one - tiny;		/* raised inexact flag */
  	}
  	return (jx>=0)? z: -z;
  }