Blame view

build4/epsilon-master/liba/src/external/openbsd/e_hypot.c 3.11 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  /* @(#)e_hypot.c 5.1 93/09/24 */
  /*
   * ====================================================
   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
   *
   * Developed at SunPro, a Sun Microsystems, Inc. business.
   * Permission to use, copy, modify, and distribute this
   * software is freely granted, provided that this notice 
   * is preserved.
   * ====================================================
   */
  
  /* hypot(x,y)
   *
   * Method :                  
   *	If (assume round-to-nearest) z=x*x+y*y 
   *	has error less than sqrt(2)/2 ulp, than 
   *	sqrt(z) has error less than 1 ulp (exercise).
   *
   *	So, compute sqrt(x*x+y*y) with some care as 
   *	follows to get the error below 1 ulp:
   *
   *	Assume x>y>0;
   *	(if possible, set rounding to round-to-nearest)
   *	1. if x > 2y  use
   *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
   *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
   *	2. if x <= 2y use
   *		t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
   *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 
   *	yy1= y with lower 32 bits chopped, y2 = y-yy1.
   *		
   *	NOTE: scaling may be necessary if some argument is too 
   *	      large or too tiny
   *
   * Special cases:
   *	hypot(x,y) is INF if x or y is +INF or -INF; else
   *	hypot(x,y) is NAN if x or y is NAN.
   *
   * Accuracy:
   * 	hypot(x,y) returns sqrt(x^2+y^2) with error less 
   * 	than 1 ulps (units in the last place) 
   */
  
  #include "math.h"
  #include "math_private.h"
  
  double
  hypot(double x, double y)
  {
  	double a=x,b=y,t1,t2,yy1,y2,w;
  	int32_t j,k,ha,hb;
  
  	GET_HIGH_WORD(ha,x);
  	ha &= 0x7fffffff;
  	GET_HIGH_WORD(hb,y);
  	hb &= 0x7fffffff;
  	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
  	SET_HIGH_WORD(a,ha);	/* a <- |a| */
  	SET_HIGH_WORD(b,hb);	/* b <- |b| */
  	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
  	k=0;
  	if(ha > 0x5f300000) {	/* a>2**500 */
  	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
  	       u_int32_t low;
  	       w = a+b;			/* for sNaN */
  	       GET_LOW_WORD(low,a);
  	       if(((ha&0xfffff)|low)==0) w = a;
  	       GET_LOW_WORD(low,b);
  	       if(((hb^0x7ff00000)|low)==0) w = b;
  	       return w;
  	   }
  	   /* scale a and b by 2**-600 */
  	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
  	   SET_HIGH_WORD(a,ha);
  	   SET_HIGH_WORD(b,hb);
  	}
  	if(hb < 0x20b00000) {	/* b < 2**-500 */
  	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */	
  	        u_int32_t low;
  		GET_LOW_WORD(low,b);
  		if((hb|low)==0) return a;
  		t1=0;
  		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
  		b *= t1;
  		a *= t1;
  		k -= 1022;
  	    } else {		/* scale a and b by 2^600 */
  	        ha += 0x25800000; 	/* a *= 2^600 */
  		hb += 0x25800000;	/* b *= 2^600 */
  		k -= 600;
  		SET_HIGH_WORD(a,ha);
  		SET_HIGH_WORD(b,hb);
  	    }
  	}
      /* medium size a and b */
  	w = a-b;
  	if (w>b) {
  	    t1 = 0;
  	    SET_HIGH_WORD(t1,ha);
  	    t2 = a-t1;
  	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
  	} else {
  	    a  = a+a;
  	    yy1 = 0;
  	    SET_HIGH_WORD(yy1,hb);
  	    y2 = b - yy1;
  	    t1 = 0;
  	    SET_HIGH_WORD(t1,ha+0x00100000);
  	    t2 = a - t1;
  	    w  = sqrt(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
  	}
  	if(k!=0) {
  	    u_int32_t high;
  	    t1 = 1.0;
  	    GET_HIGH_WORD(high,t1);
  	    SET_HIGH_WORD(t1,high+(k<<20));
  	    return t1*w;
  	} else return w;
  }