6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
#include <quiz.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <cmath>
#include "../equation_store.h"
#include "../../../poincare/test/helper.h"
using namespace Poincare;
namespace Solver {
void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables, const char * solutions[], int numberOfSolutions) {
char buffer[200];
GlobalContext globalContext;
EquationStore equationStore;
int index = 0;
while (equations[index] != 0) {
Shared::ExpressionModel * e = equationStore.addEmptyModel();
strlcpy(buffer, equations[index++], 200);
translate_in_special_chars(buffer);
e->setContent(buffer);
}
EquationStore::Error err = equationStore.exactSolve(&globalContext);
assert(err == error);
if (err != EquationStore::Error::NoError) {
return;
}
assert(equationStore.type() == type);
assert(equationStore.numberOfSolutions() == numberOfSolutions);
if (numberOfSolutions == INT_MAX) {
return;
}
if (type == EquationStore::Type::LinearSystem) {
for (int i = 0; i < numberOfSolutions; i++) {
assert(equationStore.variableAtIndex(i) == variables[i]);
}
} else {
assert(equationStore.variableAtIndex(0) == variables[0]);
}
int n = type == EquationStore::Type::PolynomialMonovariable ? numberOfSolutions+1 : numberOfSolutions; // Check Delta for PolynomialMonovariable
for (int i = 0; i < n; i++) {
equationStore.exactSolutionLayoutAtIndex(i, true)->writeTextInBuffer(buffer, 200);
translate_in_ASCII_chars(buffer);
assert(strcmp(buffer, solutions[i]) == 0);
}
}
void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) {
char buffer[200];
GlobalContext globalContext;
EquationStore equationStore;
Shared::ExpressionModel * e = equationStore.addEmptyModel();
strlcpy(buffer, equations, 200);
translate_in_special_chars(buffer);
e->setContent(buffer);
EquationStore::Error err = equationStore.exactSolve(&globalContext);
assert(err == EquationStore::Error::RequireApproximateSolution);
equationStore.setIntervalBound(0, xMin);
equationStore.setIntervalBound(1, xMax);
equationStore.approximateSolve(&globalContext);
assert(equationStore.numberOfSolutions() == numberOfSolutions);
assert(equationStore.variableAtIndex(0) == variable);
for (int i = 0; i < numberOfSolutions; i++) {
assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5);
}
assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions);
}
QUIZ_CASE(equation_solve) {
// x+y+z+a+b+c+d = 0
const char * equations0[] = {"x+y+z+a+b+c+d=0", 0};
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, nullptr, nullptr, 0);
// x^2+y = 0
const char * equations1[] = {"x^2+y=0", 0};
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, nullptr, nullptr, 0);
// cos(x) = 0
const char * equations2[] = {"cos(x)=0", 0};
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, nullptr, nullptr, 0);
// 2 = 0
const char * equations3[] = {"2=0", 0};
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, 0);
// 0 = 0
const char * equations4[] = {"0=0", 0};
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX);
// x-x+2 = 0
const char * equations5[] = {"x-x+2=0", 0};
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, 0);
// x-x= 0
const char * equations6[] = {"x-x=0", 0};
assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX);
// 2x+3=4
const char * equations7[] = {"2x+3=4", 0};
const char * solutions7[] = {"(1)/(2)"};
assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "x", solutions7, 1);
// 3x^2-4x+4=2
const char * equations8[] = {"3*x^2-4x+4=2", 0};
const char * solutions8[] = {"(2-R(2)*I)/(3)","(2+R(2)*I)/(3)", "-8"};
assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions8, 2);
// 2*x^2-4*x+4=3
const char * equations9[] = {"2*x^2-4*x+4=3", 0};
const char * solutions9[] = {"(2-R(2))/(2)","(2+R(2))/(2)", "8"};
assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions9, 2);
// 2*x^2-4*x+2=0
const char * equations10[] = {"2*x^2-4*x+2=0", 0};
const char * solutions10[] = {"1", "0"};
assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions10, 1);
// x^2+x+1=3*x^2+pi*x-R(5)
const char * equations11[] = {"x^2+x+1=3*x^2+P*x-R(5)", 0};
const char * solutions11[] = {"(1-P+R(9+8*R(5)-2*P+P^(2)))/(4)", "(1-P-R(9+8*R(5)-2*P+P^(2)))/(4)", "9+8*R(5)-2*P+P^(2)"};
assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions11, 2);
// TODO
// x^3 - 4x^2 + 6x - 24 = 0
//const char * equations10[] = {"2*x^2-4*x+4=3", 0};
//assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", {"4", "I*R(6)", "-I*R(6)", "-11616"}, 3);
//x^3+x^2+1=0
// x^3-3x-2=0
// Linear System
const char * equations12[] = {"x+y=0", 0};
assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX);
const char * equations13[] = {"x+y=0", "3x+y=-5", 0};
const char * solutions13[] = {"-(5)/(2)", "(5)/(2)"};
assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "xy", solutions13, 2);
const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-P=0", 0};
const char * solutions14[] = {"(-20-P)/(8)", "(20+P)/(8)", "(P)/(4)"};
assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "xyz", solutions14, 3);
// Monovariable non-polynomial equation
double solutions15[] = {-90.0, 90.0};
assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, 'x', solutions15, 2, false);
double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0};
assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, 'x', solutions16, 10, true);
double solutions17[] = {0};
assert_equation_approximate_solve_to("R(y)=0", -900.0, 1000.0, 'y', solutions17, 1, false);
}
}
|