Blame view

build3/python/src/py/objfun.c 19.9 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  /*
   * This file is part of the Micro Python project, http://micropython.org/
   *
   * The MIT License (MIT)
   *
   * Copyright (c) 2013, 2014 Damien P. George
   * Copyright (c) 2014 Paul Sokolovsky
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  
  #include <string.h>
  #include <assert.h>
  
  #include "py/nlr.h"
  #include "py/objtuple.h"
  #include "py/objfun.h"
  #include "py/runtime0.h"
  #include "py/runtime.h"
  #include "py/bc.h"
  #include "py/stackctrl.h"
  
  #if 0 // print debugging info
  #define DEBUG_PRINT (1)
  #else // don't print debugging info
  #define DEBUG_PRINT (0)
  #define DEBUG_printf(...) (void)0
  #endif
  
  // Note: the "name" entry in mp_obj_type_t for a function type must be
  // MP_QSTR_function because it is used to determine if an object is of generic
  // function type.
  
  /******************************************************************************/
  /* builtin functions                                                          */
  
  STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      (void)args;
      assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_0));
      mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
      mp_arg_check_num(n_args, n_kw, 0, 0, false);
      return self->fun._0();
  }
  
  const mp_obj_type_t mp_type_fun_builtin_0 = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_builtin_0_call,
      .unary_op = mp_generic_unary_op,
  };
  
  STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_1));
      mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
      mp_arg_check_num(n_args, n_kw, 1, 1, false);
      return self->fun._1(args[0]);
  }
  
  const mp_obj_type_t mp_type_fun_builtin_1 = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_builtin_1_call,
      .unary_op = mp_generic_unary_op,
  };
  
  STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_2));
      mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
      mp_arg_check_num(n_args, n_kw, 2, 2, false);
      return self->fun._2(args[0], args[1]);
  }
  
  const mp_obj_type_t mp_type_fun_builtin_2 = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_builtin_2_call,
      .unary_op = mp_generic_unary_op,
  };
  
  STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_3));
      mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
      mp_arg_check_num(n_args, n_kw, 3, 3, false);
      return self->fun._3(args[0], args[1], args[2]);
  }
  
  const mp_obj_type_t mp_type_fun_builtin_3 = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_builtin_3_call,
      .unary_op = mp_generic_unary_op,
  };
  
  STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_var));
      mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in);
  
      // check number of arguments
      mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
  
      if (self->is_kw) {
          // function allows keywords
  
          // we create a map directly from the given args array
          mp_map_t kw_args;
          mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
  
          return self->fun.kw(n_args, args, &kw_args);
  
      } else {
          // function takes a variable number of arguments, but no keywords
  
          return self->fun.var(n_args, args);
      }
  }
  
  const mp_obj_type_t mp_type_fun_builtin_var = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_builtin_var_call,
      .unary_op = mp_generic_unary_op,
  };
  
  /******************************************************************************/
  /* byte code functions                                                        */
  
  qstr mp_obj_code_get_name(const byte *code_info) {
      code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry
      #if MICROPY_PERSISTENT_CODE
      return code_info[0] | (code_info[1] << 8);
      #else
      return mp_decode_uint_value(code_info);
      #endif
  }
  
  #if MICROPY_EMIT_NATIVE
  STATIC const mp_obj_type_t mp_type_fun_native;
  #endif
  
  qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
      const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
      #if MICROPY_EMIT_NATIVE
      if (fun->base.type == &mp_type_fun_native) {
          // TODO native functions don't have name stored
          return MP_QSTR_;
      }
      #endif
  
      const byte *bc = fun->bytecode;
      bc = mp_decode_uint_skip(bc); // skip n_state
      bc = mp_decode_uint_skip(bc); // skip n_exc_stack
      bc++; // skip scope_params
      bc++; // skip n_pos_args
      bc++; // skip n_kwonly_args
      bc++; // skip n_def_pos_args
      return mp_obj_code_get_name(bc);
  }
  
  #if MICROPY_CPYTHON_COMPAT
  STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
      (void)kind;
      mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
      mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
  }
  #endif
  
  #if DEBUG_PRINT
  STATIC void dump_args(const mp_obj_t *a, size_t sz) {
      DEBUG_printf("%p: ", a);
      for (size_t i = 0; i < sz; i++) {
          DEBUG_printf("%p ", a[i]);
      }
      DEBUG_printf("\n");
  }
  #else
  #define dump_args(...) (void)0
  #endif
  
  // With this macro you can tune the maximum number of function state bytes
  // that will be allocated on the stack.  Any function that needs more
  // than this will try to use the heap, with fallback to stack allocation.
  #define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))
  
  // Set this to enable a simple stack overflow check.
  #define VM_DETECT_STACK_OVERFLOW (0)
  
  #if MICROPY_STACKLESS
  mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      MP_STACK_CHECK();
      mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
  
      // bytecode prelude: state size and exception stack size
      size_t n_state = mp_decode_uint_value(self->bytecode);
      size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(self->bytecode));
  
      // allocate state for locals and stack
      size_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
      mp_code_state_t *code_state;
      code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
      if (!code_state) {
          return NULL;
      }
  
      code_state->fun_bc = self;
      code_state->ip = 0;
      mp_setup_code_state(code_state, n_args, n_kw, args);
  
      // execute the byte code with the correct globals context
      code_state->old_globals = mp_globals_get();
      mp_globals_set(self->globals);
  
      return code_state;
  }
  #endif
  
  STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      MP_STACK_CHECK();
  
      DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
      DEBUG_printf("Input pos args: ");
      dump_args(args, n_args);
      DEBUG_printf("Input kw args: ");
      dump_args(args + n_args, n_kw * 2);
      mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
      DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
  
      // bytecode prelude: state size and exception stack size
      size_t n_state = mp_decode_uint_value(self->bytecode);
      size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(self->bytecode));
  
  #if VM_DETECT_STACK_OVERFLOW
      n_state += 1;
  #endif
  
      // allocate state for locals and stack
      size_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
      mp_code_state_t *code_state = NULL;
      if (state_size > VM_MAX_STATE_ON_STACK) {
          code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
      }
      if (code_state == NULL) {
          code_state = alloca(sizeof(mp_code_state_t) + state_size);
          state_size = 0; // indicate that we allocated using alloca
      }
  
      code_state->fun_bc = self;
      code_state->ip = 0;
      mp_setup_code_state(code_state, n_args, n_kw, args);
  
      // execute the byte code with the correct globals context
      code_state->old_globals = mp_globals_get();
      mp_globals_set(self->globals);
      mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
      mp_globals_set(code_state->old_globals);
  
  #if VM_DETECT_STACK_OVERFLOW
      if (vm_return_kind == MP_VM_RETURN_NORMAL) {
          if (code_state->sp < code_state->state) {
              printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
              assert(0);
          }
      }
      // We can't check the case when an exception is returned in state[n_state - 1]
      // and there are no arguments, because in this case our detection slot may have
      // been overwritten by the returned exception (which is allowed).
      if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
          // Just check to see that we have at least 1 null object left in the state.
          bool overflow = true;
          for (size_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
              if (code_state->state[i] == MP_OBJ_NULL) {
                  overflow = false;
                  break;
              }
          }
          if (overflow) {
              printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
              assert(0);
          }
      }
  #endif
  
      mp_obj_t result;
      if (vm_return_kind == MP_VM_RETURN_NORMAL) {
          // return value is in *sp
          result = *code_state->sp;
      } else {
          // must be an exception because normal functions can't yield
          assert(vm_return_kind == MP_VM_RETURN_EXCEPTION);
          // return value is in fastn[0]==state[n_state - 1]
          result = code_state->state[n_state - 1];
      }
  
      // free the state if it was allocated on the heap
      if (state_size != 0) {
          m_del_var(mp_code_state_t, byte, state_size, code_state);
      }
  
      if (vm_return_kind == MP_VM_RETURN_NORMAL) {
          return result;
      } else { // MP_VM_RETURN_EXCEPTION
          nlr_raise(result);
      }
  }
  
  #if MICROPY_PY_FUNCTION_ATTRS
  STATIC void fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
      if (dest[0] != MP_OBJ_NULL) {
          // not load attribute
          return;
      }
      if (attr == MP_QSTR___name__) {
          dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
      }
  }
  #endif
  
  const mp_obj_type_t mp_type_fun_bc = {
      { &mp_type_type },
      .name = MP_QSTR_function,
  #if MICROPY_CPYTHON_COMPAT
      .print = fun_bc_print,
  #endif
      .call = fun_bc_call,
      .unary_op = mp_generic_unary_op,
  #if MICROPY_PY_FUNCTION_ATTRS
      .attr = fun_bc_attr,
  #endif
  };
  
  mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
      size_t n_def_args = 0;
      size_t n_extra_args = 0;
      mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
      if (def_args_in != MP_OBJ_NULL) {
          assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple));
          n_def_args = def_args->len;
          n_extra_args = def_args->len;
      }
      if (def_kw_args != MP_OBJ_NULL) {
          n_extra_args += 1;
      }
      mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
      o->base.type = &mp_type_fun_bc;
      o->globals = mp_globals_get();
      o->bytecode = code;
      o->const_table = const_table;
      if (def_args != NULL) {
          memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
      }
      if (def_kw_args != MP_OBJ_NULL) {
          o->extra_args[n_def_args] = def_kw_args;
      }
      return MP_OBJ_FROM_PTR(o);
  }
  
  /******************************************************************************/
  /* native functions                                                           */
  
  #if MICROPY_EMIT_NATIVE
  
  STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      MP_STACK_CHECK();
      mp_obj_fun_bc_t *self = self_in;
      mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
      return fun(self_in, n_args, n_kw, args);
  }
  
  STATIC const mp_obj_type_t mp_type_fun_native = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_native_call,
      .unary_op = mp_generic_unary_op,
  };
  
  mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
      mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
      o->base.type = &mp_type_fun_native;
      return o;
  }
  
  #endif // MICROPY_EMIT_NATIVE
  
  /******************************************************************************/
  /* viper functions                                                            */
  
  #if MICROPY_EMIT_NATIVE
  
  typedef struct _mp_obj_fun_viper_t {
      mp_obj_base_t base;
      size_t n_args;
      void *fun_data; // GC must be able to trace this pointer
      mp_uint_t type_sig;
  } mp_obj_fun_viper_t;
  
  typedef mp_uint_t (*viper_fun_0_t)(void);
  typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
  typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
  typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
  typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
  
  STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      mp_obj_fun_viper_t *self = self_in;
  
      mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
  
      void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
  
      mp_uint_t ret;
      if (n_args == 0) {
          ret = ((viper_fun_0_t)fun)();
      } else if (n_args == 1) {
          ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4));
      } else if (n_args == 2) {
          ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8));
      } else if (n_args == 3) {
          ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12));
      } else {
          // compiler allows at most 4 arguments
          assert(n_args == 4);
          ret = ((viper_fun_4_t)fun)(
              mp_convert_obj_to_native(args[0], self->type_sig >> 4),
              mp_convert_obj_to_native(args[1], self->type_sig >> 8),
              mp_convert_obj_to_native(args[2], self->type_sig >> 12),
              mp_convert_obj_to_native(args[3], self->type_sig >> 16)
          );
      }
  
      return mp_convert_native_to_obj(ret, self->type_sig);
  }
  
  STATIC const mp_obj_type_t mp_type_fun_viper = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_viper_call,
      .unary_op = mp_generic_unary_op,
  };
  
  mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig) {
      mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
      o->base.type = &mp_type_fun_viper;
      o->n_args = n_args;
      o->fun_data = fun_data;
      o->type_sig = type_sig;
      return o;
  }
  
  #endif // MICROPY_EMIT_NATIVE
  
  /******************************************************************************/
  /* inline assembler functions                                                 */
  
  #if MICROPY_EMIT_INLINE_ASM
  
  typedef struct _mp_obj_fun_asm_t {
      mp_obj_base_t base;
      size_t n_args;
      void *fun_data; // GC must be able to trace this pointer
      mp_uint_t type_sig;
  } mp_obj_fun_asm_t;
  
  typedef mp_uint_t (*inline_asm_fun_0_t)(void);
  typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
  typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
  typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
  typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
  
  // convert a Micro Python object to a sensible value for inline asm
  STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
      // TODO for byte_array, pass pointer to the array
      if (MP_OBJ_IS_SMALL_INT(obj)) {
          return MP_OBJ_SMALL_INT_VALUE(obj);
      } else if (obj == mp_const_none) {
          return 0;
      } else if (obj == mp_const_false) {
          return 0;
      } else if (obj == mp_const_true) {
          return 1;
      } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
          return mp_obj_int_get_truncated(obj);
      } else if (MP_OBJ_IS_STR(obj)) {
          // pointer to the string (it's probably constant though!)
          size_t l;
          return (mp_uint_t)mp_obj_str_get_data(obj, &l);
      } else {
          mp_obj_type_t *type = mp_obj_get_type(obj);
          if (0) {
  #if MICROPY_PY_BUILTINS_FLOAT
          } else if (type == &mp_type_float) {
              // convert float to int (could also pass in float registers)
              return (mp_int_t)mp_obj_float_get(obj);
  #endif
          } else if (type == &mp_type_tuple || type == &mp_type_list) {
              // pointer to start of tuple (could pass length, but then could use len(x) for that)
              size_t len;
              mp_obj_t *items;
              mp_obj_get_array(obj, &len, &items);
              return (mp_uint_t)items;
          } else {
              mp_buffer_info_t bufinfo;
              if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
                  // supports the buffer protocol, return a pointer to the data
                  return (mp_uint_t)bufinfo.buf;
              } else {
                  // just pass along a pointer to the object
                  return (mp_uint_t)obj;
              }
          }
      }
  }
  
  STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
      mp_obj_fun_asm_t *self = self_in;
  
      mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
  
      void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
  
      mp_uint_t ret;
      if (n_args == 0) {
          ret = ((inline_asm_fun_0_t)fun)();
      } else if (n_args == 1) {
          ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
      } else if (n_args == 2) {
          ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
      } else if (n_args == 3) {
          ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
      } else {
          // compiler allows at most 4 arguments
          assert(n_args == 4);
          ret = ((inline_asm_fun_4_t)fun)(
              convert_obj_for_inline_asm(args[0]),
              convert_obj_for_inline_asm(args[1]),
              convert_obj_for_inline_asm(args[2]),
              convert_obj_for_inline_asm(args[3])
          );
      }
  
      return mp_convert_native_to_obj(ret, self->type_sig);
  }
  
  STATIC const mp_obj_type_t mp_type_fun_asm = {
      { &mp_type_type },
      .name = MP_QSTR_function,
      .call = fun_asm_call,
      .unary_op = mp_generic_unary_op,
  };
  
  mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) {
      mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
      o->base.type = &mp_type_fun_asm;
      o->n_args = n_args;
      o->fun_data = fun_data;
      o->type_sig = type_sig;
      return o;
  }
  
  #endif // MICROPY_EMIT_INLINE_ASM