6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#include <poincare/hyperbolic_cosine.h>
#include <poincare/complex.h>
#include <poincare/addition.h>
#include <poincare/power.h>
#include <poincare/division.h>
#include <poincare/opposite.h>
#include <poincare/simplification_engine.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type HyperbolicCosine::type() const {
return Type::HyperbolicCosine;
}
Expression * HyperbolicCosine::clone() const {
HyperbolicCosine * a = new HyperbolicCosine(m_operands, true);
return a;
}
Expression * HyperbolicCosine::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
Expression * op = editableOperand(0);
if (op->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return this;
}
template<typename T>
Complex<T> HyperbolicCosine::computeOnComplex(const Complex<T> c, AngleUnit angleUnit) {
if (c.b() == 0) {
return Complex<T>::Float(std::cosh(c.a()));
}
Complex<T> e = Complex<T>::Float(M_E);
Complex<T> exp1 = Power::compute(e, c);
Complex<T> exp2 = Power::compute(e, Complex<T>::Cartesian(-c.a(), -c.b()));
Complex<T> sum = Addition::compute(exp1, exp2);
return Division::compute(sum, Complex<T>::Float(2));
}
}
|