Blame view

build3/poincare/src/binomial_coefficient.cpp 3.95 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
  #include <poincare/binomial_coefficient.h>
  #include <poincare/undefined.h>
  #include <poincare/complex.h>
  #include <poincare/rational.h>
  #include "layout/parenthesis_layout.h"
  #include "layout/grid_layout.h"
  
  extern "C" {
  #include <stdlib.h>
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Expression::Type BinomialCoefficient::type() const {
    return Type::BinomialCoefficient;
  }
  
  Expression * BinomialCoefficient::clone() const {
    BinomialCoefficient * b = new BinomialCoefficient(m_operands, true);
    return b;
  }
  
  Expression * BinomialCoefficient::shallowReduce(Context& context, AngleUnit angleUnit) {
    Expression * e = Expression::shallowReduce(context, angleUnit);
    if (e != this) {
      return e;
    }
    Expression * op0 = editableOperand(0);
    Expression * op1 = editableOperand(1);
  #if MATRIX_EXACT_REDUCING
    if (op0->type() == Type::Matrix || op1->type() == Type::Matrix) {
      return replaceWith(new Undefined(), true);
    }
  #endif
    if (op0->type() == Type::Rational) {
      Rational * r0 = static_cast<Rational *>(op0);
      if (!r0->denominator().isOne() || r0->numerator().isNegative()) {
        return replaceWith(new Undefined(), true);
      }
    }
    if (op1->type() == Type::Rational) {
      Rational * r1 = static_cast<Rational *>(op1);
      if (!r1->denominator().isOne() || r1->numerator().isNegative()) {
        return replaceWith(new Undefined(), true);
      }
    }
    if (op0->type() != Type::Rational || op1->type() != Type::Rational) {
      return this;
    }
    Rational * r0 = static_cast<Rational *>(op0);
    Rational * r1 = static_cast<Rational *>(op1);
  
    Integer n = r0->numerator();
    Integer k = r1->numerator();
    if (n.isLowerThan(k)) {
      return replaceWith(new Undefined(), true);
    }
    /* if n is too big, we do not reduce to avoid too long computation.
     * The binomial coefficient will be evaluate approximatively later */
    if (Integer(k_maxNValue).isLowerThan(n)) {
      return this;
    }
    Rational result(1);
    Integer kBis = Integer::Subtraction(n, k);
    k = kBis.isLowerThan(k) ? kBis : k;
    int clippedK = k.extractedInt(); // Authorized because k < n < k_maxNValue
    for (int i = 0; i < clippedK; i++) {
      Rational factor = Rational(Integer::Subtraction(n, Integer(i)), Integer::Subtraction(k, Integer(i)));
      result = Rational::Multiplication(result, factor);
    }
    return replaceWith(new Rational(result), true);
  }
  
  ExpressionLayout * BinomialCoefficient::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
    assert(floatDisplayMode != FloatDisplayMode::Default);
    assert(complexFormat != ComplexFormat::Default);
    ExpressionLayout * childrenLayouts[2];
    childrenLayouts[0] = operand(0)->createLayout(floatDisplayMode, complexFormat);
    childrenLayouts[1] = operand(1)->createLayout(floatDisplayMode, complexFormat);
    return new ParenthesisLayout(new GridLayout(childrenLayouts, 2, 1));
  }
  
  template<typename T>
  Expression * BinomialCoefficient::templatedApproximate(Context& context, AngleUnit angleUnit) const {
    Expression * nInput = operand(0)->approximate<T>(context, angleUnit);
    Expression * kInput = operand(1)->approximate<T>(context, angleUnit);
    if (nInput->type() != Type::Complex || kInput->type() != Type::Complex) {
      return new Complex<T>(Complex<T>::Float(NAN));
    }
    T n = static_cast<Complex<T> *>(nInput)->toScalar();
    T k = static_cast<Complex<T> *>(kInput)->toScalar();
    delete nInput;
    delete kInput;
    return new Complex<T>(Complex<T>::Float(compute(k, n)));
  }
  
  
  template<typename T>
  T BinomialCoefficient::compute(T k, T n) {
    k = k > (n-k) ? n-k : k;
    if (std::isnan(n) || std::isnan(k) || n != std::round(n) || k != std::round(k) || k > n || k < 0 || n < 0) {
      return NAN;
    }
    T result = 1;
    for (int i = 0; i < k; i++) {
      result *= (n-(T)i)/(k-(T)i);
      if (std::isinf(result) || std::isnan(result)) {
        return result;
      }
    }
    return std::round(result);
  }
  
  template double BinomialCoefficient::compute(double k, double n);
  template float BinomialCoefficient::compute(float k, float n);
  
  }