Blame view

build3/liba/src/external/openbsd/e_sqrt.c 14.1 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
  /* @(#)e_sqrt.c 5.1 93/09/24 */
  /*
   * ====================================================
   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
   *
   * Developed at SunPro, a Sun Microsystems, Inc. business.
   * Permission to use, copy, modify, and distribute this
   * software is freely granted, provided that this notice 
   * is preserved.
   * ====================================================
   */
  
  /* sqrt(x)
   * Return correctly rounded sqrt.
   *           ------------------------------------------
   *	     |  Use the hardware sqrt if you have one |
   *           ------------------------------------------
   * Method: 
   *   Bit by bit method using integer arithmetic. (Slow, but portable) 
   *   1. Normalization
   *	Scale x to y in [1,4) with even powers of 2: 
   *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
   *		sqrt(x) = 2^k * sqrt(y)
   *   2. Bit by bit computation
   *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
   *	     i							 0
   *                                     i+1         2
   *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
   *	     i      i            i                 i
   *                                                        
   *	To compute q    from q , one checks whether 
   *		    i+1       i                       
   *
   *			      -(i+1) 2
   *			(q + 2      ) <= y.			(2)
   *     			  i
   *							      -(i+1)
   *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
   *		 	       i+1   i             i+1   i
   *
   *	With some algebric manipulation, it is not difficult to see
   *	that (2) is equivalent to 
   *                             -(i+1)
   *			s  +  2       <= y			(3)
   *			 i                i
   *
   *	The advantage of (3) is that s  and y  can be computed by 
   *				      i      i
   *	the following recurrence formula:
   *	    if (3) is false
   *
   *	    s     =  s  ,	y    = y   ;			(4)
   *	     i+1      i		 i+1    i
   *
   *	    otherwise,
   *                         -i                     -(i+1)
   *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
   *           i+1      i          i+1    i     i
   *				
   *	One may easily use induction to prove (4) and (5). 
   *	Note. Since the left hand side of (3) contain only i+2 bits,
   *	      it does not necessary to do a full (53-bit) comparison 
   *	      in (3).
   *   3. Final rounding
   *	After generating the 53 bits result, we compute one more bit.
   *	Together with the remainder, we can decide whether the
   *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
   *	(it will never equal to 1/2ulp).
   *	The rounding mode can be detected by checking whether
   *	huge + tiny is equal to huge, and whether huge - tiny is
   *	equal to huge for some floating point number "huge" and "tiny".
   *		
   * Special cases:
   *	sqrt(+-0) = +-0 	... exact
   *	sqrt(inf) = inf
   *	sqrt(-ve) = NaN		... with invalid signal
   *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
   *
   * Other methods : see the appended file at the end of the program below.
   *---------------
   */
  
  #include <sys/cdefs.h>
  #include <float.h>
  #include <math.h>
  
  #include "math_private.h"
  
  static	const double	one	= 1.0, tiny=1.0e-300;
  
  double
  sqrt(double x)
  {
  	double z;
  	int32_t sign = (int)0x80000000; 
  	int32_t ix0,s0,q,m,t,i;
  	u_int32_t r,t1,s1,ix1,q1;
  
  	EXTRACT_WORDS(ix0,ix1,x);
  
      /* take care of Inf and NaN */
  	if((ix0&0x7ff00000)==0x7ff00000) {			
  	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  					   sqrt(-inf)=sNaN */
  	} 
      /* take care of zero */
  	if(ix0<=0) {
  	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  	    else if(ix0<0)
  		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
  	}
      /* normalize x */
  	m = (ix0>>20);
  	if(m==0) {				/* subnormal x */
  	    while(ix0==0) {
  		m -= 21;
  		ix0 |= (ix1>>11); ix1 <<= 21;
  	    }
  	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  	    m -= i-1;
  	    ix0 |= (ix1>>(32-i));
  	    ix1 <<= i;
  	}
  	m -= 1023;	/* unbias exponent */
  	ix0 = (ix0&0x000fffff)|0x00100000;
  	if(m&1){	/* odd m, double x to make it even */
  	    ix0 += ix0 + ((ix1&sign)>>31);
  	    ix1 += ix1;
  	}
  	m >>= 1;	/* m = [m/2] */
  
      /* generate sqrt(x) bit by bit */
  	ix0 += ix0 + ((ix1&sign)>>31);
  	ix1 += ix1;
  	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
  	r = 0x00200000;		/* r = moving bit from right to left */
  
  	while(r!=0) {
  	    t = s0+r; 
  	    if(t<=ix0) { 
  		s0   = t+r; 
  		ix0 -= t; 
  		q   += r; 
  	    } 
  	    ix0 += ix0 + ((ix1&sign)>>31);
  	    ix1 += ix1;
  	    r>>=1;
  	}
  
  	r = sign;
  	while(r!=0) {
  	    t1 = s1+r; 
  	    t  = s0;
  	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) { 
  		s1  = t1+r;
  		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
  		ix0 -= t;
  		if (ix1 < t1) ix0 -= 1;
  		ix1 -= t1;
  		q1  += r;
  	    }
  	    ix0 += ix0 + ((ix1&sign)>>31);
  	    ix1 += ix1;
  	    r>>=1;
  	}
  
      /* use floating add to find out rounding direction */
  	if((ix0|ix1)!=0) {
  	    z = one-tiny; /* trigger inexact flag */
  	    if (z>=one) {
  	        z = one+tiny;
  	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
  		else if (z>one) {
  		    if (q1==(u_int32_t)0xfffffffe) q+=1;
  		    q1+=2; 
  		} else
  	            q1 += (q1&1);
  	    }
  	}
  	ix0 = (q>>1)+0x3fe00000;
  	ix1 =  q1>>1;
  	if ((q&1)==1) ix1 |= sign;
  	ix0 += (m <<20);
  	INSERT_WORDS(z,ix0,ix1);
  	return z;
  }
  
  /*
  Other methods  (use floating-point arithmetic)
  -------------
  (This is a copy of a drafted paper by Prof W. Kahan 
  and K.C. Ng, written in May, 1986)
  
  	Two algorithms are given here to implement sqrt(x) 
  	(IEEE double precision arithmetic) in software.
  	Both supply sqrt(x) correctly rounded. The first algorithm (in
  	Section A) uses newton iterations and involves four divisions.
  	The second one uses reciproot iterations to avoid division, but
  	requires more multiplications. Both algorithms need the ability
  	to chop results of arithmetic operations instead of round them, 
  	and the INEXACT flag to indicate when an arithmetic operation
  	is executed exactly with no roundoff error, all part of the 
  	standard (IEEE 754-1985). The ability to perform shift, add,
  	subtract and logical AND operations upon 32-bit words is needed
  	too, though not part of the standard.
  
  A.  sqrt(x) by Newton Iteration
  
     (1)	Initial approximation
  
  	Let x0 and x1 be the leading and the trailing 32-bit words of
  	a floating point number x (in IEEE double format) respectively 
  
  	    1    11		     52				  ...widths
  	   ------------------------------------------------------
  	x: |s|	  e     |	      f				|
  	   ------------------------------------------------------
  	      msb    lsb  msb				      lsb ...order
  
   
  	     ------------------------  	     ------------------------
  	x0:  |s|   e    |    f1     |	 x1: |          f2           |
  	     ------------------------  	     ------------------------
  
  	By performing shifts and subtracts on x0 and x1 (both regarded
  	as integers), we obtain an 8-bit approximation of sqrt(x) as
  	follows.
  
  		k  := (x0>>1) + 0x1ff80000;
  		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
  	Here k is a 32-bit integer and T1[] is an integer array containing
  	correction terms. Now magically the floating value of y (y's
  	leading 32-bit word is y0, the value of its trailing word is 0)
  	approximates sqrt(x) to almost 8-bit.
  
  	Value of T1:
  	static int T1[32]= {
  	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
  	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
  	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
  	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
  
      (2)	Iterative refinement
  
  	Apply Heron's rule three times to y, we have y approximates 
  	sqrt(x) to within 1 ulp (Unit in the Last Place):
  
  		y := (y+x/y)/2		... almost 17 sig. bits
  		y := (y+x/y)/2		... almost 35 sig. bits
  		y := y-(y-x/y)/2	... within 1 ulp
  
  
  	Remark 1.
  	    Another way to improve y to within 1 ulp is:
  
  		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
  		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
  
  				2
  			    (x-y )*y
  		y := y + 2* ----------	...within 1 ulp
  			       2
  			     3y  + x
  
  
  	This formula has one division fewer than the one above; however,
  	it requires more multiplications and additions. Also x must be
  	scaled in advance to avoid spurious overflow in evaluating the
  	expression 3y*y+x. Hence it is not recommended uless division
  	is slow. If division is very slow, then one should use the 
  	reciproot algorithm given in section B.
  
      (3) Final adjustment
  
  	By twiddling y's last bit it is possible to force y to be 
  	correctly rounded according to the prevailing rounding mode
  	as follows. Let r and i be copies of the rounding mode and
  	inexact flag before entering the square root program. Also we
  	use the expression y+-ulp for the next representable floating
  	numbers (up and down) of y. Note that y+-ulp = either fixed
  	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  	mode.
  
  		I := FALSE;	... reset INEXACT flag I
  		R := RZ;	... set rounding mode to round-toward-zero
  		z := x/y;	... chopped quotient, possibly inexact
  		If(not I) then {	... if the quotient is exact
  		    if(z=y) {
  		        I := i;	 ... restore inexact flag
  		        R := r;  ... restore rounded mode
  		        return sqrt(x):=y.
  		    } else {
  			z := z - ulp;	... special rounding
  		    }
  		}
  		i := TRUE;		... sqrt(x) is inexact
  		If (r=RN) then z=z+ulp	... rounded-to-nearest
  		If (r=RP) then {	... round-toward-+inf
  		    y = y+ulp; z=z+ulp;
  		}
  		y := y+z;		... chopped sum
  		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
  	        I := i;	 		... restore inexact flag
  	        R := r;  		... restore rounded mode
  	        return sqrt(x):=y.
  		    
      (4)	Special cases
  
  	Square root of +inf, +-0, or NaN is itself;
  	Square root of a negative number is NaN with invalid signal.
  
  
  B.  sqrt(x) by Reciproot Iteration
  
     (1)	Initial approximation
  
  	Let x0 and x1 be the leading and the trailing 32-bit words of
  	a floating point number x (in IEEE double format) respectively
  	(see section A). By performing shifs and subtracts on x0 and y0,
  	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  
  	    k := 0x5fe80000 - (x0>>1);
  	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
  
  	Here k is a 32-bit integer and T2[] is an integer array 
  	containing correction terms. Now magically the floating
  	value of y (y's leading 32-bit word is y0, the value of
  	its trailing word y1 is set to zero) approximates 1/sqrt(x)
  	to almost 7.8-bit.
  
  	Value of T2:
  	static int T2[64]= {
  	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
  	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
  
      (2)	Iterative refinement
  
  	Apply Reciproot iteration three times to y and multiply the
  	result by x to get an approximation z that matches sqrt(x)
  	to about 1 ulp. To be exact, we will have 
  		-1ulp < sqrt(x)-z<1.0625ulp.
  	
  	... set rounding mode to Round-to-nearest
  	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
  	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  	... special arrangement for better accuracy
  	   z := x*y			... 29 bits to sqrt(x), with z*y<1
  	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
  
  	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  	(a) the term z*y in the final iteration is always less than 1; 
  	(b) the error in the final result is biased upward so that
  		-1 ulp < sqrt(x) - z < 1.0625 ulp
  	    instead of |sqrt(x)-z|<1.03125ulp.
  
      (3)	Final adjustment
  
  	By twiddling y's last bit it is possible to force y to be 
  	correctly rounded according to the prevailing rounding mode
  	as follows. Let r and i be copies of the rounding mode and
  	inexact flag before entering the square root program. Also we
  	use the expression y+-ulp for the next representable floating
  	numbers (up and down) of y. Note that y+-ulp = either fixed
  	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  	mode.
  
  	R := RZ;		... set rounding mode to round-toward-zero
  	switch(r) {
  	    case RN:		... round-to-nearest
  	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  	       break;
  	    case RZ:case RM:	... round-to-zero or round-to--inf
  	       R:=RP;		... reset rounding mod to round-to-+inf
  	       if(x<z*z ... rounded up) z = z - ulp; else
  	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  	       break;
  	    case RP:		... round-to-+inf
  	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  	       if(x>z*z ...chopped) z = z+ulp;
  	       break;
  	}
  
  	Remark 3. The above comparisons can be done in fixed point. For
  	example, to compare x and w=z*z chopped, it suffices to compare
  	x1 and w1 (the trailing parts of x and w), regarding them as
  	two's complement integers.
  
  	...Is z an exact square root?
  	To determine whether z is an exact square root of x, let z1 be the
  	trailing part of z, and also let x0 and x1 be the leading and
  	trailing parts of x.
  
  	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
  	    I := 1;		... Raise Inexact flag: z is not exact
  	else {
  	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
  	    k := z1 >> 26;		... get z's 25-th and 26-th 
  					    fraction bits
  	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  	}
  	R:= r		... restore rounded mode
  	return sqrt(x):=z.
  
  	If multiplication is cheaper then the foregoing red tape, the 
  	Inexact flag can be evaluated by
  
  	    I := i;
  	    I := (z*z!=x) or I.
  
  	Note that z*z can overwrite I; this value must be sensed if it is 
  	True.
  
  	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  	zero.
  
  		    --------------------
  		z1: |        f2        | 
  		    --------------------
  		bit 31		   bit 0
  
  	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  	or even of logb(x) have the following relations:
  
  	-------------------------------------------------
  	bit 27,26 of z1		bit 1,0 of x1	logb(x)
  	-------------------------------------------------
  	00			00		odd and even
  	01			01		even
  	10			10		odd
  	10			00		even
  	11			01		even
  	-------------------------------------------------
  
      (4)	Special cases (see (4) of Section A).	
   
   */
  
  #if LDBL_MANT_DIG == 53
  #ifdef __weak_alias
  __weak_alias(sqrtl, sqrt);
  #endif /* __weak_alias */
  #endif /* LDBL_MANT_DIG == 53 */