Blame view

build3/apps/statistics/store.cpp 5.57 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  #include "store.h"
  #include <assert.h>
  #include <float.h>
  #include <cmath>
  #include <string.h>
  #include <ion.h>
  
  using namespace Shared;
  
  namespace Statistics {
  
  Store::Store() :
    MemoizedCurveViewRange(),
    FloatPairStore(),
    m_barWidth(1.0),
    m_firstDrawnBarAbscissa(0.0)
  {
  }
  
  uint32_t Store::barChecksum() {
    double data[2] = {m_barWidth, m_firstDrawnBarAbscissa};
    size_t dataLengthInBytes = 2*sizeof(double);
    assert((dataLengthInBytes & 0x3) == 0); // Assert that dataLengthInBytes is a multiple of 4
    return Ion::crc32((uint32_t *)data, dataLengthInBytes/sizeof(uint32_t));
  }
  
  /* Histogram bars */
  
  double Store::barWidth() {
    return m_barWidth;
  }
  
  void Store::setBarWidth(double barWidth) {
    if (barWidth <= 0.0) {
      return;
    }
    m_barWidth = barWidth;
  }
  
  double Store::firstDrawnBarAbscissa() {
    return m_firstDrawnBarAbscissa;
  }
  
  void Store::setFirstDrawnBarAbscissa(double firstBarAbscissa) {
    m_firstDrawnBarAbscissa = firstBarAbscissa;
  }
  
  double Store::heightOfBarAtIndex(int index) {
    return sumOfValuesBetween(startOfBarAtIndex(index), endOfBarAtIndex(index));
  }
  
  double Store::heightOfBarAtValue(double value) {
    double width = barWidth();
    int barNumber = std::floor((value - m_firstDrawnBarAbscissa)/width);
    double lowerBound = m_firstDrawnBarAbscissa + barNumber*width;
    double upperBound = m_firstDrawnBarAbscissa + (barNumber+1)*width;
    return sumOfValuesBetween(lowerBound, upperBound);
  }
  
  double Store::startOfBarAtIndex(int index) {
    double firstBarAbscissa = m_firstDrawnBarAbscissa + m_barWidth*std::floor((minValue()- m_firstDrawnBarAbscissa)/m_barWidth);
    return firstBarAbscissa + index * m_barWidth;
  }
  
  double Store::endOfBarAtIndex(int index) {
    return startOfBarAtIndex(index+1);
  }
  
  double Store::numberOfBars() {
    double firstBarAbscissa = m_firstDrawnBarAbscissa + m_barWidth*std::floor((minValue()- m_firstDrawnBarAbscissa)/m_barWidth);
    return std::ceil((maxValue() - firstBarAbscissa)/m_barWidth)+1;
  }
  
  bool Store::scrollToSelectedBarIndex(int index) {
    float startSelectedBar = startOfBarAtIndex(index);
    float windowRange = m_xMax - m_xMin;
    float range = windowRange/(1+k_displayLeftMarginRatio+k_displayRightMarginRatio);
    if (m_xMin + k_displayLeftMarginRatio*range > startSelectedBar) {
      m_xMin = startSelectedBar - k_displayLeftMarginRatio*range;
      m_xMax = m_xMin + windowRange;
      return true;
    }
    float endSelectedBar = endOfBarAtIndex(index);
    if (endSelectedBar > m_xMax - k_displayRightMarginRatio*range) {
      m_xMax = endSelectedBar + k_displayRightMarginRatio*range;
      m_xMin = m_xMax - windowRange;
      return true;
    }
    return false;
  }
  
  /* Calculation */
  
  double Store::sumOfOccurrences() {
    return sumOfColumn(1);
  }
  
  double Store::maxValue() {
    double max = -DBL_MAX;
    for (int k = 0; k < m_numberOfPairs; k++) {
      if (m_data[0][k] > max && m_data[1][k] > 0) {
        max = m_data[0][k];
      }
    }
    return max;
  }
  
  double Store::minValue() {
    double min = DBL_MAX;
    for (int k = 0; k < m_numberOfPairs; k++) {
      if (m_data[0][k] < min && m_data[1][k] > 0) {
        min = m_data[0][k];
      }
    }
    return min;
  }
  
  double Store::range() {
    return maxValue()-minValue();
  }
  
  double Store::mean() {
    return sum()/sumOfColumn(1);
  }
  
  double Store::variance() {
    double m = mean();
    return squaredValueSum()/sumOfColumn(1) - m*m;
  }
  
  double Store::standardDeviation() {
    return std::sqrt(variance());
  }
  
  double Store::sampleStandardDeviation() {
    double n = sumOfColumn(1);
    double s = std::sqrt(n/(n-1.0));
    return s*standardDeviation();
  }
  
  double Store::firstQuartile() {
    int firstQuartileIndex = std::ceil(sumOfColumn(1)/4);
    return sortedElementNumber(firstQuartileIndex);
  }
  
  double Store::thirdQuartile() {
    int thirdQuartileIndex = std::ceil(3*sumOfColumn(1)/4);
    return sortedElementNumber(thirdQuartileIndex);
  }
  
  double Store::quartileRange() {
    return thirdQuartile()-firstQuartile();
  }
  
  double Store::median() {
    int total = sumOfColumn(1);
    int halfTotal = total/2;
    int totalMod2 = total - 2*halfTotal;
    if (totalMod2 == 0) {
      double minusMedian = sortedElementNumber(halfTotal);
      double maxMedian = sortedElementNumber(halfTotal+1);
      return (minusMedian+maxMedian)/2.0;
    } else {
      return sortedElementNumber(halfTotal+1);
    }
  }
  
  double Store::sum() {
    double result = 0;
    for (int k = 0; k < m_numberOfPairs; k++) {
      result += m_data[0][k]*m_data[1][k];
    }
    return result;
  }
  
  double Store::squaredValueSum() {
    double result = 0;
    for (int k = 0; k < m_numberOfPairs; k++) {
      result += m_data[0][k]*m_data[0][k]*m_data[1][k];
    }
    return result;
  }
  
  /* private methods */
  
  double Store::defaultValue(int i) {
    if (i == 0) {
      return 0.0;
    }
    return 1.0;
  }
  
  double Store::sumOfValuesBetween(double x1, double x2) {
    int result = 0;
    for (int k = 0; k < m_numberOfPairs; k++) {
      if (m_data[0][k] < x2 && x1 <= m_data[0][k]) {
        result += m_data[1][k];
      }
    }
    return result;
  }
  
  double Store::sortedElementNumber(int k) {
    // TODO: use an other algorithm (ex quickselect) to avoid quadratic complexity
    double bufferValues[m_numberOfPairs];
    memcpy(bufferValues, m_data[0], m_numberOfPairs*sizeof(double));
    int sortedElementIndex = 0;
    double cumulatedSize = 0.0;
    while (cumulatedSize < k) {
      sortedElementIndex = minIndex(bufferValues, m_numberOfPairs);
      bufferValues[sortedElementIndex] = DBL_MAX;
      cumulatedSize += m_data[1][sortedElementIndex];
    }
    return m_data[0][sortedElementIndex];
  }
  
  int Store::minIndex(double * bufferValues, int bufferLength) {
    int index = 0;
    for (int i = 1; i < bufferLength; i++) {
      if (bufferValues[index] > bufferValues[i]) {
        index = i;
      }
    }
    return index;
  }
  
  }