Blame view

build3/apps/sequence/sequence.cpp 14.6 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  #include "sequence.h"
  #include "sequence_store.h"
  #include "cache_context.h"
  #include "../../poincare/src/layout/string_layout.h"
  #include "../../poincare/src/layout/baseline_relative_layout.h"
  #include <string.h>
  #include <cmath>
  
  using namespace Shared;
  using namespace Poincare;
  
  namespace Sequence {
  
  Sequence::Sequence(const char * text, KDColor color) :
    Function(text, color),
    m_type(Type::Explicit),
    m_firstInitialConditionText(),
    m_secondInitialConditionText(),
    m_firstInitialConditionExpression(nullptr),
    m_secondInitialConditionExpression(nullptr),
    m_firstInitialConditionLayout(nullptr),
    m_secondInitialConditionLayout(nullptr),
    m_nameLayout(nullptr),
    m_definitionName(nullptr),
    m_firstInitialConditionName(nullptr),
    m_secondInitialConditionName(nullptr),
    m_initialRank(0)
  {
  }
  
  Sequence::~Sequence() {
    if (m_firstInitialConditionLayout != nullptr) {
      delete m_firstInitialConditionLayout;
      m_firstInitialConditionLayout = nullptr;
    }
    if (m_secondInitialConditionLayout != nullptr) {
      delete m_secondInitialConditionLayout;
      m_secondInitialConditionLayout = nullptr;
    }
    if (m_firstInitialConditionExpression != nullptr) {
      delete m_firstInitialConditionExpression;
      m_firstInitialConditionExpression = nullptr;
    }
    if (m_secondInitialConditionExpression != nullptr) {
      delete m_secondInitialConditionExpression;
      m_secondInitialConditionExpression = nullptr;
    }
    if (m_nameLayout != nullptr) {
      delete m_nameLayout;
      m_nameLayout = nullptr;
    }
    if (m_definitionName != nullptr) {
      delete m_definitionName;
      m_definitionName = nullptr;
    }
    if (m_firstInitialConditionName != nullptr) {
      delete m_firstInitialConditionName;
      m_firstInitialConditionName = nullptr;
    }
    if (m_secondInitialConditionName != nullptr) {
      delete m_secondInitialConditionName;
      m_secondInitialConditionName = nullptr;
    }
  }
  
  Sequence& Sequence::operator=(const Sequence& other) {
    /* We temporarely store other's required features to be able to access them
     * after setType (which erase all contents and index buffer) even in case of
     * self assignement */
    const char * contentText = other.text();
    const char * firstInitialText = other.m_firstInitialConditionText;
    const char * secondInitialText = other.m_secondInitialConditionText;
    Function::operator=(other);
    setType(other.m_type);
    setInitialRank(other.m_initialRank);
    setContent(contentText);
    setFirstInitialConditionContent(firstInitialText);
    setSecondInitialConditionContent(secondInitialText);
    return *this;
  }
  
  uint32_t Sequence::checksum() {
    char data[k_dataLengthInBytes/sizeof(char)] = {};
    strlcpy(data, text(), TextField::maxBufferSize());
    strlcpy(data+TextField::maxBufferSize(), firstInitialConditionText(), TextField::maxBufferSize());
    strlcpy(data+2*TextField::maxBufferSize(), secondInitialConditionText(), TextField::maxBufferSize());
    int * intAdress = (int *)(&data[3*TextField::maxBufferSize()]);
    *intAdress = m_initialRank;
    data[k_dataLengthInBytes-3] = (char)m_type;
    data[k_dataLengthInBytes-2] = name()!= nullptr ? name()[0] : 0;
    data[k_dataLengthInBytes-1] = (char)(isActive() ? 1 : 0);
    return Ion::crc32((uint32_t *)data, k_dataLengthInBytes/sizeof(uint32_t));
  }
  
  const char * Sequence::firstInitialConditionText() {
    return m_firstInitialConditionText;
  }
  
  const char * Sequence::secondInitialConditionText() {
    return m_secondInitialConditionText;
  }
  
  Sequence::Type Sequence::type() {
    return m_type;
  }
  
  void Sequence::setType(Type type) {
    if (m_type == Type::Explicit) {
      setInitialRank(0);
    }
    m_type = type;
    tidy();
    /* Reset all contents */
    switch (m_type) {
      case Type::Explicit:
        setContent("");
        break;
      case Type::SingleRecurrence:
      {
        char ex[5] = "u(n)";
        ex[0] = name()[0];
        setContent(ex);
        break;
      }
      case Type::DoubleRecurrence:
      {
        char ex[12] = "u(n+1)+u(n)";
        ex[0] = name()[0];
        ex[7] = name()[0];
        setContent(ex);
        break;
      }
    }
    setFirstInitialConditionContent("");
    setSecondInitialConditionContent("");
  }
  
  void Sequence::setInitialRank(int rank) {
    m_initialRank = rank;
    if (m_firstInitialConditionName != nullptr) {
      delete m_firstInitialConditionName;
      m_firstInitialConditionName = nullptr;
    }
    if (m_secondInitialConditionName != nullptr) {
      delete m_secondInitialConditionName;
      m_secondInitialConditionName = nullptr;
    }
  }
  
  Poincare::Expression * Sequence::firstInitialConditionExpression(Context * context) const {
    if (m_firstInitialConditionExpression == nullptr) {
      m_firstInitialConditionExpression = Poincare::Expression::ParseAndSimplify(m_firstInitialConditionText, *context);
    }
    return m_firstInitialConditionExpression;
  }
  
  Poincare::Expression * Sequence::secondInitialConditionExpression(Context * context) const {
    if (m_secondInitialConditionExpression == nullptr) {
      m_secondInitialConditionExpression = Poincare::Expression::ParseAndSimplify(m_secondInitialConditionText, *context);
    }
    return m_secondInitialConditionExpression;
  }
  
  Poincare::ExpressionLayout * Sequence::firstInitialConditionLayout() {
    if (m_firstInitialConditionLayout == nullptr) {
      Expression * nonSimplifedExpression = Expression::parse(m_firstInitialConditionText);
      if (nonSimplifedExpression) {
        m_firstInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
        delete nonSimplifedExpression;
      }
    }
    return m_firstInitialConditionLayout;
  }
  
  Poincare::ExpressionLayout * Sequence::secondInitialConditionLayout() {
    if (m_secondInitialConditionLayout == nullptr) {
      Expression * nonSimplifedExpression = Expression::parse(m_secondInitialConditionText);
      if (nonSimplifedExpression) {
        m_secondInitialConditionLayout = nonSimplifedExpression->createLayout(Expression::FloatDisplayMode::Decimal);
        delete nonSimplifedExpression;
      }
    }
    return m_secondInitialConditionLayout;
  }
  
  void Sequence::setContent(const char * c) {
    Function::setContent(c);
  }
  
  void Sequence::setFirstInitialConditionContent(const char * c) {
    strlcpy(m_firstInitialConditionText, c, sizeof(m_firstInitialConditionText));
    if (m_firstInitialConditionExpression != nullptr) {
      delete m_firstInitialConditionExpression;
      m_firstInitialConditionExpression = nullptr;
    }
    if (m_firstInitialConditionLayout != nullptr) {
      delete m_firstInitialConditionLayout;
      m_firstInitialConditionLayout = nullptr;
    }
  }
  
  void Sequence::setSecondInitialConditionContent(const char * c) {
    strlcpy(m_secondInitialConditionText, c, sizeof(m_secondInitialConditionText));
    if (m_secondInitialConditionExpression != nullptr) {
      delete m_secondInitialConditionExpression;
      m_secondInitialConditionExpression = nullptr;
    }
    if (m_secondInitialConditionLayout != nullptr) {
      delete m_secondInitialConditionLayout;
      m_secondInitialConditionLayout = nullptr;
    }
  }
  
  char Sequence::symbol() const {
    return 'n';
  }
  
  int Sequence::numberOfElements() {
    return (int)m_type + 1;
  }
  
  Poincare::ExpressionLayout * Sequence::nameLayout() {
    if (m_nameLayout == nullptr) {
      m_nameLayout = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n", 1, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
    }
    return m_nameLayout;
  }
  
  Poincare::ExpressionLayout * Sequence::definitionName() {
    if (m_definitionName == nullptr) {
      if (m_type == Type::Explicit) {
        m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n ", 2, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
      }
      if (m_type == Type::SingleRecurrence) {
        m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+1 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
      }
      if (m_type == Type::DoubleRecurrence) {
        m_definitionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout("n+2 ", 4, KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
      }
    }
    return m_definitionName;
  }
  
  Poincare::ExpressionLayout * Sequence::firstInitialConditionName() {
    char buffer[k_initialRankNumberOfDigits+1];
    Integer(m_initialRank).writeTextInBuffer(buffer, k_initialRankNumberOfDigits+1);
    if (m_firstInitialConditionName == nullptr) {
      if (m_type == Type::SingleRecurrence) {
        m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
      }
      if (m_type == Type::DoubleRecurrence) {
        m_firstInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
      }
    }
    return m_firstInitialConditionName;
  }
  
  Poincare::ExpressionLayout * Sequence::secondInitialConditionName() {
    char buffer[k_initialRankNumberOfDigits+1];
    Integer(m_initialRank+1).writeTextInBuffer(buffer, k_initialRankNumberOfDigits+1);
    if (m_secondInitialConditionName == nullptr) {
      if (m_type == Type::DoubleRecurrence) {
        m_secondInitialConditionName = new BaselineRelativeLayout(new StringLayout(name(), 1), new StringLayout(buffer, strlen(buffer), KDText::FontSize::Small), BaselineRelativeLayout::Type::Subscript);
  
      }
    }
    return m_secondInitialConditionName;
  }
  
  bool Sequence::isDefined() {
    switch (m_type) {
      case Type::Explicit:
        return strlen(text()) != 0;
      case Type::SingleRecurrence:
        return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0;
      default:
        return strlen(text()) != 0 && strlen(firstInitialConditionText()) != 0 && strlen(secondInitialConditionText()) != 0;
    }
  }
  
  bool Sequence::isEmpty() {
    switch (m_type) {
      case Type::Explicit:
        return Function::isEmpty();
      case Type::SingleRecurrence:
        return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0;
      default:
        return Function::isEmpty() && strlen(m_firstInitialConditionText) == 0 && strlen(m_secondInitialConditionText) == 0;
    }
  }
  
  template<typename T>
  T Sequence::templatedApproximateAtAbscissa(T x, SequenceContext * sqctx) const {
    T n = std::round(x);
    int sequenceIndex = name()[0] == SequenceStore::k_sequenceNames[0][0] ? 0 : 1;
    if (sqctx->iterateUntilRank<T>(n)) {
      return sqctx->valueOfSequenceAtPreviousRank<T>(sequenceIndex, 0);
    }
    return NAN;
  }
  
  template<typename T>
  T Sequence::approximateToNextRank(int n, SequenceContext * sqctx) const {
    if (n < m_initialRank || n < 0) {
      return NAN;
    }
    CacheContext<T> ctx = CacheContext<T>(sqctx);
    T un = sqctx->valueOfSequenceAtPreviousRank<T>(0, 0);
    T unm1 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 1);
    T unm2 = sqctx->valueOfSequenceAtPreviousRank<T>(0, 2);
    T vn = sqctx->valueOfSequenceAtPreviousRank<T>(1, 0);
    T vnm1 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 1);
    T vnm2 = sqctx->valueOfSequenceAtPreviousRank<T>(1, 2);
    Poincare::Symbol nSymbol(symbol());
    Poincare::Symbol vnSymbol(Symbol::SpecialSymbols::vn);
    Poincare::Symbol vn1Symbol(Symbol::SpecialSymbols::vn1);
    Poincare::Symbol unSymbol(Symbol::SpecialSymbols::un);
    Poincare::Symbol un1Symbol(Symbol::SpecialSymbols::un1);
    switch (m_type) {
      case Type::Explicit:
      {
        ctx.setValueForSymbol(un, &unSymbol);
        ctx.setValueForSymbol(vn, &vnSymbol);
        Poincare::Complex<T> e = Poincare::Complex<T>::Float(n);
        ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
        return expression(sqctx)->template approximateToScalar<T>(ctx);
      }
      case Type::SingleRecurrence:
      {
        if (n == m_initialRank) {
          return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
        }
        ctx.setValueForSymbol(un, &un1Symbol);
        ctx.setValueForSymbol(unm1, &unSymbol);
        ctx.setValueForSymbol(vn, &vn1Symbol);
        ctx.setValueForSymbol(vnm1, &vnSymbol);
        Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-1);
        ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
        return expression(sqctx)->template approximateToScalar<T>(ctx);
      }
      default:
      {
        if (n == m_initialRank) {
          return firstInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
        }
        if (n == m_initialRank+1) {
          return secondInitialConditionExpression(sqctx)->template approximateToScalar<T>(*sqctx);
        }
        ctx.setValueForSymbol(unm1, &un1Symbol);
        ctx.setValueForSymbol(unm2, &unSymbol);
        ctx.setValueForSymbol(vnm1, &vn1Symbol);
        ctx.setValueForSymbol(vnm2, &vnSymbol);
        Poincare::Complex<T> e = Poincare::Complex<T>::Float(n-2);
        ctx.setExpressionForSymbolName(&e, &nSymbol, *sqctx);
        return expression(sqctx)->template approximateToScalar<T>(ctx);
      }
    }
  }
  
  double Sequence::sumBetweenBounds(double start, double end, Context * context) const {
    double result = 0.0;
    if (end-start > k_maxNumberOfTermsInSum || start + 1.0 == start) {
      return NAN;
    }
    for (double i = std::round(start); i <= std::round(end); i = i + 1.0) {
      /* When |start| >> 1.0, start + 1.0 = start. In that case, quit the
       * infinite loop. */
      if (i == i-1.0 || i == i+1.0) {
        return NAN;
      }
      result += evaluateAtAbscissa(i, context);
    }
    return result;
  }
  
  void Sequence::tidy() {
    Function::tidy();
    if (m_firstInitialConditionLayout != nullptr) {
      delete m_firstInitialConditionLayout;
      m_firstInitialConditionLayout = nullptr;
    }
    if (m_secondInitialConditionLayout != nullptr) {
      delete m_secondInitialConditionLayout;
      m_secondInitialConditionLayout = nullptr;
    }
    if (m_firstInitialConditionExpression != nullptr) {
      delete m_firstInitialConditionExpression;
      m_firstInitialConditionExpression = nullptr;
    }
    if (m_secondInitialConditionExpression != nullptr) {
      delete m_secondInitialConditionExpression;
      m_secondInitialConditionExpression = nullptr;
    }
    if (m_nameLayout != nullptr) {
      delete m_nameLayout;
      m_nameLayout = nullptr;
    }
    if (m_definitionName != nullptr) {
      delete m_definitionName;
      m_definitionName = nullptr;
    }
    if (m_firstInitialConditionName != nullptr) {
      delete m_firstInitialConditionName;
      m_firstInitialConditionName = nullptr;
    }
    if (m_secondInitialConditionName != nullptr) {
      delete m_secondInitialConditionName;
      m_secondInitialConditionName = nullptr;
    }
  }
  
  template double Sequence::templatedApproximateAtAbscissa<double>(double, SequenceContext*) const;
  template float Sequence::templatedApproximateAtAbscissa<float>(float, SequenceContext*) const;
  template double Sequence::approximateToNextRank<double>(int, SequenceContext*) const;
  template float Sequence::approximateToNextRank<float>(int, SequenceContext*) const;
  }