Blame view

build2/epsilon-master/python/src/py/compile.c 138 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
  /*
   * This file is part of the MicroPython project, http://micropython.org/
   *
   * The MIT License (MIT)
   *
   * Copyright (c) 2013-2015 Damien P. George
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  
  #include <stdbool.h>
  #include <stdint.h>
  #include <stdio.h>
  #include <string.h>
  #include <assert.h>
  
  #include "py/scope.h"
  #include "py/emit.h"
  #include "py/compile.h"
  #include "py/runtime.h"
  #include "py/asmbase.h"
  
  #if MICROPY_ENABLE_COMPILER
  
  // TODO need to mangle __attr names
  
  #define INVALID_LABEL (0xffff)
  
  typedef enum {
  // define rules with a compile function
  #define DEF_RULE(rule, comp, kind, ...) PN_##rule,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
      PN_const_object, // special node for a constant, generic Python object
  // define rules without a compile function
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) PN_##rule,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  } pn_kind_t;
  
  #define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
  
  #if NEED_METHOD_TABLE
  
  // we need a method table to do the lookup for the emitter functions
  #define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
  #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
  #define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
  #define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))
  
  #else
  
  // if we only have the bytecode emitter enabled then we can do a direct call to the functions
  #define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
  #define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
  #define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
  #define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))
  
  #endif
  
  #if MICROPY_EMIT_NATIVE
  // define a macro to access external native emitter
  #if MICROPY_EMIT_X64
  #define NATIVE_EMITTER(f) emit_native_x64_##f
  #elif MICROPY_EMIT_X86
  #define NATIVE_EMITTER(f) emit_native_x86_##f
  #elif MICROPY_EMIT_THUMB
  #define NATIVE_EMITTER(f) emit_native_thumb_##f
  #elif MICROPY_EMIT_ARM
  #define NATIVE_EMITTER(f) emit_native_arm_##f
  #elif MICROPY_EMIT_XTENSA
  #define NATIVE_EMITTER(f) emit_native_xtensa_##f
  #else
  #error "unknown native emitter"
  #endif
  #endif
  
  #if MICROPY_EMIT_INLINE_ASM
  // define macros for inline assembler
  #if MICROPY_EMIT_INLINE_THUMB
  #define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
  #define ASM_EMITTER(f) emit_inline_thumb_##f
  #elif MICROPY_EMIT_INLINE_XTENSA
  #define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
  #define ASM_EMITTER(f) emit_inline_xtensa_##f
  #else
  #error "unknown asm emitter"
  #endif
  #endif
  
  #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
  #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
  
  // elements in this struct are ordered to make it compact
  typedef struct _compiler_t {
      qstr source_file;
  
      uint8_t is_repl;
      uint8_t pass; // holds enum type pass_kind_t
      uint8_t have_star;
  
      // try to keep compiler clean from nlr
      mp_obj_t compile_error; // set to an exception object if there's an error
      size_t compile_error_line; // set to best guess of line of error
  
      uint next_label;
  
      uint16_t num_dict_params;
      uint16_t num_default_params;
  
      uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
      uint16_t continue_label;
      uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
      uint16_t break_continue_except_level;
  
      scope_t *scope_head;
      scope_t *scope_cur;
  
      emit_t *emit;                                   // current emitter
      #if NEED_METHOD_TABLE
      const emit_method_table_t *emit_method_table;   // current emit method table
      #endif
  
      #if MICROPY_EMIT_INLINE_ASM
      emit_inline_asm_t *emit_inline_asm;                                   // current emitter for inline asm
      const emit_inline_asm_method_table_t *emit_inline_asm_method_table;   // current emit method table for inline asm
      #endif
  } compiler_t;
  
  STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
      // if the line of the error is unknown then try to update it from the pn
      if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
          comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line;
      }
  }
  
  STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) {
      // only register the error if there has been no other error
      if (comp->compile_error == MP_OBJ_NULL) {
          comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
          compile_error_set_line(comp, pn);
      }
  }
  
  STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
  STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
  STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);
  
  STATIC uint comp_next_label(compiler_t *comp) {
      return comp->next_label++;
  }
  
  STATIC void compile_increase_except_level(compiler_t *comp) {
      comp->cur_except_level += 1;
      if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
          comp->scope_cur->exc_stack_size = comp->cur_except_level;
      }
  }
  
  STATIC void compile_decrease_except_level(compiler_t *comp) {
      assert(comp->cur_except_level > 0);
      comp->cur_except_level -= 1;
  }
  
  STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
      scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
      scope->parent = comp->scope_cur;
      scope->next = NULL;
      if (comp->scope_head == NULL) {
          comp->scope_head = scope;
      } else {
          scope_t *s = comp->scope_head;
          while (s->next != NULL) {
              s = s->next;
          }
          s->next = scope;
      }
      return scope;
  }
  
  typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
  
  STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
      if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
          for (int i = 0; i < num_nodes; i++) {
              f(comp, pns->nodes[i]);
          }
      } else if (!MP_PARSE_NODE_IS_NULL(pn)) {
          f(comp, pn);
      }
  }
  
  STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
      int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
      for (int i = 0; i < num_nodes; i++) {
          compile_node(comp, pns->nodes[i]);
          if (comp->compile_error != MP_OBJ_NULL) {
              // add line info for the error in case it didn't have a line number
              compile_error_set_line(comp, pns->nodes[i]);
              return;
          }
      }
  }
  
  STATIC void compile_load_id(compiler_t *comp, qstr qst) {
      if (comp->pass == MP_PASS_SCOPE) {
          mp_emit_common_get_id_for_load(comp->scope_cur, qst);
      } else {
          #if NEED_METHOD_TABLE
          mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
          #else
          mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
          #endif
      }
  }
  
  STATIC void compile_store_id(compiler_t *comp, qstr qst) {
      if (comp->pass == MP_PASS_SCOPE) {
          mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
      } else {
          #if NEED_METHOD_TABLE
          mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
          #else
          mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
          #endif
      }
  }
  
  STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
      if (comp->pass == MP_PASS_SCOPE) {
          mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
      } else {
          #if NEED_METHOD_TABLE
          mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
          #else
          mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
          #endif
      }
  }
  
  STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
      int total = 0;
      if (!MP_PARSE_NODE_IS_NULL(pn)) {
          compile_node(comp, pn);
          total += 1;
      }
      if (pns_list != NULL) {
          int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
          for (int i = 0; i < n; i++) {
              compile_node(comp, pns_list->nodes[i]);
          }
          total += n;
      }
      EMIT_ARG(build_tuple, total);
  }
  
  STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // a simple tuple expression
      c_tuple(comp, MP_PARSE_NODE_NULL, pns);
  }
  
  STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
      if (mp_parse_node_is_const_false(pn)) {
          if (jump_if == false) {
              EMIT_ARG(jump, label);
          }
          return;
      } else if (mp_parse_node_is_const_true(pn)) {
          if (jump_if == true) {
              EMIT_ARG(jump, label);
          }
          return;
      } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
          if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
              if (jump_if == false) {
              and_or_logic1:;
                  uint label2 = comp_next_label(comp);
                  for (int i = 0; i < n - 1; i++) {
                      c_if_cond(comp, pns->nodes[i], !jump_if, label2);
                  }
                  c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
                  EMIT_ARG(label_assign, label2);
              } else {
              and_or_logic2:
                  for (int i = 0; i < n; i++) {
                      c_if_cond(comp, pns->nodes[i], jump_if, label);
                  }
              }
              return;
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
              if (jump_if == false) {
                  goto and_or_logic2;
              } else {
                  goto and_or_logic1;
              }
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
              c_if_cond(comp, pns->nodes[0], !jump_if, label);
              return;
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
              // cond is something in parenthesis
              if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                  // empty tuple, acts as false for the condition
                  if (jump_if == false) {
                      EMIT_ARG(jump, label);
                  }
              } else {
                  assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                  // non-empty tuple, acts as true for the condition
                  if (jump_if == true) {
                      EMIT_ARG(jump, label);
                  }
              }
              return;
          }
      }
  
      // nothing special, fall back to default compiling for node and jump
      compile_node(comp, pn);
      EMIT_ARG(pop_jump_if, jump_if, label);
  }
  
  typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
  STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
  
  STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
      if (assign_kind != ASSIGN_AUG_STORE) {
          compile_node(comp, pns->nodes[0]);
      }
  
      if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
          mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
          if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
              int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
              if (assign_kind != ASSIGN_AUG_STORE) {
                  for (int i = 0; i < n - 1; i++) {
                      compile_node(comp, pns1->nodes[i]);
                  }
              }
              assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
              pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
          }
          if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
              if (assign_kind == ASSIGN_AUG_STORE) {
                  EMIT(rot_three);
                  EMIT(store_subscr);
              } else {
                  compile_node(comp, pns1->nodes[0]);
                  if (assign_kind == ASSIGN_AUG_LOAD) {
                      EMIT(dup_top_two);
                      EMIT(load_subscr);
                  } else {
                      EMIT(store_subscr);
                  }
              }
              return;
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
              assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
              if (assign_kind == ASSIGN_AUG_LOAD) {
                  EMIT(dup_top);
                  EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
              } else {
                  if (assign_kind == ASSIGN_AUG_STORE) {
                      EMIT(rot_two);
                  }
                  EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
              }
              return;
          }
      }
  
      compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression");
  }
  
  // we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail)
  STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) {
      uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1;
  
      // look for star expression
      uint have_star_index = -1;
      if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) {
          EMIT_ARG(unpack_ex, 0, num_tail);
          have_star_index = 0;
      }
      for (uint i = 0; i < num_tail; i++) {
          if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
              if (have_star_index == (uint)-1) {
                  EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
                  have_star_index = num_head + i;
              } else {
                  compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment");
                  return;
              }
          }
      }
      if (have_star_index == (uint)-1) {
          EMIT_ARG(unpack_sequence, num_head + num_tail);
      }
      if (num_head != 0) {
          if (0 == have_star_index) {
              c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE);
          } else {
              c_assign(comp, node_head, ASSIGN_STORE);
          }
      }
      for (uint i = 0; i < num_tail; i++) {
          if (num_head + i == have_star_index) {
              c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE);
          } else {
              c_assign(comp, nodes_tail[i], ASSIGN_STORE);
          }
      }
  }
  
  // assigns top of stack to pn
  STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
      assert(!MP_PARSE_NODE_IS_NULL(pn));
      if (MP_PARSE_NODE_IS_LEAF(pn)) {
          if (MP_PARSE_NODE_IS_ID(pn)) {
              qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
              switch (assign_kind) {
                  case ASSIGN_STORE:
                  case ASSIGN_AUG_STORE:
                      compile_store_id(comp, arg);
                      break;
                  case ASSIGN_AUG_LOAD:
                  default:
                      compile_load_id(comp, arg);
                      break;
              }
          } else {
              goto cannot_assign;
          }
      } else {
          // pn must be a struct
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
              case PN_atom_expr_normal:
                  // lhs is an index or attribute
                  c_assign_atom_expr(comp, pns, assign_kind);
                  break;
  
              case PN_testlist_star_expr:
              case PN_exprlist:
                  // lhs is a tuple
                  if (assign_kind != ASSIGN_STORE) {
                      goto cannot_assign;
                  }
                  c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
                  break;
  
              case PN_atom_paren:
                  // lhs is something in parenthesis
                  if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                      // empty tuple
                      goto cannot_assign;
                  } else {
                      assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                      if (assign_kind != ASSIGN_STORE) {
                          goto cannot_assign;
                      }
                      pns = (mp_parse_node_struct_t*)pns->nodes[0];
                      goto testlist_comp;
                  }
                  break;
  
              case PN_atom_bracket:
                  // lhs is something in brackets
                  if (assign_kind != ASSIGN_STORE) {
                      goto cannot_assign;
                  }
                  if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                      // empty list, assignment allowed
                      c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL);
                  } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
                      pns = (mp_parse_node_struct_t*)pns->nodes[0];
                      goto testlist_comp;
                  } else {
                      // brackets around 1 item
                      c_assign_tuple(comp, pns->nodes[0], 0, NULL);
                  }
                  break;
  
              default:
                  goto cannot_assign;
          }
          return;
  
          testlist_comp:
          // lhs is a sequence
          if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
              mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
              if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                  // sequence of one item, with trailing comma
                  assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                  c_assign_tuple(comp, pns->nodes[0], 0, NULL);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                  // sequence of many items
                  uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
                  c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                  goto cannot_assign;
              } else {
                  // sequence with 2 items
                  goto sequence_with_2_items;
              }
          } else {
              // sequence with 2 items
              sequence_with_2_items:
              c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes);
          }
          return;
      }
      return;
  
      cannot_assign:
      compile_syntax_error(comp, pn, "can't assign to expression");
  }
  
  // stuff for lambda and comprehensions and generators:
  //  if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
  //  if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
  //  if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
  STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
      assert(n_pos_defaults >= 0);
      assert(n_kw_defaults >= 0);
  
      // set flags
      if (n_kw_defaults > 0) {
          this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
      }
      this_scope->num_def_pos_args = n_pos_defaults;
  
      // make closed over variables, if any
      // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
      int nfree = 0;
      if (comp->scope_cur->kind != SCOPE_MODULE) {
          for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
              id_info_t *id = &comp->scope_cur->id_info[i];
              if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                  for (int j = 0; j < this_scope->id_info_len; j++) {
                      id_info_t *id2 = &this_scope->id_info[j];
                      if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                          // in MicroPython we load closures using LOAD_FAST
                          EMIT_LOAD_FAST(id->qst, id->local_num);
                          nfree += 1;
                      }
                  }
              }
          }
      }
  
      // make the function/closure
      if (nfree == 0) {
          EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
      } else {
          EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
      }
  }
  
  STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
      // For efficiency of the code below we extract the parse-node kind here
      int pn_kind;
      if (MP_PARSE_NODE_IS_ID(pn)) {
          pn_kind = -1;
      } else {
          assert(MP_PARSE_NODE_IS_STRUCT(pn));
          pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn);
      }
  
      if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
          comp->have_star = true;
          /* don't need to distinguish bare from named star
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
              // bare star
          } else {
              // named star
          }
          */
  
      } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
          // named double star
          // TODO do we need to do anything with this?
  
      } else {
          mp_parse_node_t pn_id;
          mp_parse_node_t pn_equal;
          if (pn_kind == -1) {
              // this parameter is just an id
  
              pn_id = pn;
              pn_equal = MP_PARSE_NODE_NULL;
  
          } else if (pn_kind == PN_typedargslist_name) {
              // this parameter has a colon and/or equal specifier
  
              mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
              pn_id = pns->nodes[0];
              //pn_colon = pns->nodes[1]; // unused
              pn_equal = pns->nodes[2];
  
          } else {
              assert(pn_kind == PN_varargslist_name); // should be
              // this parameter has an equal specifier
  
              mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
              pn_id = pns->nodes[0];
              pn_equal = pns->nodes[1];
          }
  
          if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
              // this parameter does not have a default value
  
              // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
              if (!comp->have_star && comp->num_default_params != 0) {
                  compile_syntax_error(comp, pn, "non-default argument follows default argument");
                  return;
              }
  
          } else {
              // this parameter has a default value
              // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
  
              if (comp->have_star) {
                  comp->num_dict_params += 1;
                  // in MicroPython we put the default dict parameters into a dictionary using the bytecode
                  if (comp->num_dict_params == 1) {
                      // in MicroPython we put the default positional parameters into a tuple using the bytecode
                      // we need to do this here before we start building the map for the default keywords
                      if (comp->num_default_params > 0) {
                          EMIT_ARG(build_tuple, comp->num_default_params);
                      } else {
                          EMIT(load_null); // sentinel indicating empty default positional args
                      }
                      // first default dict param, so make the map
                      EMIT_ARG(build_map, 0);
                  }
  
                  // compile value then key, then store it to the dict
                  compile_node(comp, pn_equal);
                  EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
                  EMIT(store_map);
              } else {
                  comp->num_default_params += 1;
                  compile_node(comp, pn_equal);
              }
          }
      }
  }
  
  STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
      // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
      // expression for default arguments, which may contain a lambda.  The lambda will
      // call here in a nested way, so we must save and restore the relevant state.
      bool orig_have_star = comp->have_star;
      uint16_t orig_num_dict_params = comp->num_dict_params;
      uint16_t orig_num_default_params = comp->num_default_params;
  
      // compile default parameters
      comp->have_star = false;
      comp->num_dict_params = 0;
      comp->num_default_params = 0;
      apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
  
      if (comp->compile_error != MP_OBJ_NULL) {
          return;
      }
  
      // in MicroPython we put the default positional parameters into a tuple using the bytecode
      // the default keywords args may have already made the tuple; if not, do it now
      if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
          EMIT_ARG(build_tuple, comp->num_default_params);
          EMIT(load_null); // sentinel indicating empty default keyword args
      }
  
      // make the function
      close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
  
      // restore state
      comp->have_star = orig_have_star;
      comp->num_dict_params = orig_num_dict_params;
      comp->num_default_params = orig_num_default_params;
  }
  
  // leaves function object on stack
  // returns function name
  STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
      if (comp->pass == MP_PASS_SCOPE) {
          // create a new scope for this function
          scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
          // store the function scope so the compiling function can use it at each pass
          pns->nodes[4] = (mp_parse_node_t)s;
      }
  
      // get the scope for this function
      scope_t *fscope = (scope_t*)pns->nodes[4];
  
      // compile the function definition
      compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
  
      // return its name (the 'f' in "def f(...):")
      return fscope->simple_name;
  }
  
  // leaves class object on stack
  // returns class name
  STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
      if (comp->pass == MP_PASS_SCOPE) {
          // create a new scope for this class
          scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
          // store the class scope so the compiling function can use it at each pass
          pns->nodes[3] = (mp_parse_node_t)s;
      }
  
      EMIT(load_build_class);
  
      // scope for this class
      scope_t *cscope = (scope_t*)pns->nodes[3];
  
      // compile the class
      close_over_variables_etc(comp, cscope, 0, 0);
  
      // get its name
      EMIT_ARG(load_const_str, cscope->simple_name);
  
      // nodes[1] has parent classes, if any
      // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
      mp_parse_node_t parents = pns->nodes[1];
      if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
          parents = MP_PARSE_NODE_NULL;
      }
      compile_trailer_paren_helper(comp, parents, false, 2);
  
      // return its name (the 'C' in class C(...):")
      return cscope->simple_name;
  }
  
  // returns true if it was a built-in decorator (even if the built-in had an error)
  STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
      if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
          return false;
      }
  
      if (name_len != 2) {
          compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator");
          return true;
      }
  
      qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
      if (attr == MP_QSTR_bytecode) {
          *emit_options = MP_EMIT_OPT_BYTECODE;
  #if MICROPY_EMIT_NATIVE
      } else if (attr == MP_QSTR_native) {
          *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
      } else if (attr == MP_QSTR_viper) {
          *emit_options = MP_EMIT_OPT_VIPER;
  #endif
      #if MICROPY_EMIT_INLINE_ASM
      } else if (attr == ASM_DECORATOR_QSTR) {
          *emit_options = MP_EMIT_OPT_ASM;
      #endif
      } else {
          compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator");
      }
  
      return true;
  }
  
  STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // get the list of decorators
      mp_parse_node_t *nodes;
      int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
  
      // inherit emit options for this function/class definition
      uint emit_options = comp->scope_cur->emit_options;
  
      // compile each decorator
      int num_built_in_decorators = 0;
      for (int i = 0; i < n; i++) {
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
          mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i];
  
          // nodes[0] contains the decorator function, which is a dotted name
          mp_parse_node_t *name_nodes;
          int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
  
          // check for built-in decorators
          if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
              // this was a built-in
              num_built_in_decorators += 1;
  
          } else {
              // not a built-in, compile normally
  
              // compile the decorator function
              compile_node(comp, name_nodes[0]);
              for (int j = 1; j < name_len; j++) {
                  assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
                  EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]));
              }
  
              // nodes[1] contains arguments to the decorator function, if any
              if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
                  // call the decorator function with the arguments in nodes[1]
                  compile_node(comp, pns_decorator->nodes[1]);
              }
          }
      }
  
      // compile the body (funcdef, async funcdef or classdef) and get its name
      mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1];
      qstr body_name = 0;
      if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
          body_name = compile_funcdef_helper(comp, pns_body, emit_options);
      #if MICROPY_PY_ASYNC_AWAIT
      } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
          assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
          mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0];
          body_name = compile_funcdef_helper(comp, pns0, emit_options);
          scope_t *fscope = (scope_t*)pns0->nodes[4];
          fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
      #endif
      } else {
          assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
          body_name = compile_classdef_helper(comp, pns_body, emit_options);
      }
  
      // call each decorator
      for (int i = 0; i < n - num_built_in_decorators; i++) {
          EMIT_ARG(call_function, 1, 0, 0);
      }
  
      // store func/class object into name
      compile_store_id(comp, body_name);
  }
  
  STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
      qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
      // store function object into function name
      compile_store_id(comp, fname);
  }
  
  STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
      if (MP_PARSE_NODE_IS_ID(pn)) {
          compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
  
          compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
  
          if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
              mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
              if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
                  int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                  for (int i = 0; i < n - 1; i++) {
                      compile_node(comp, pns1->nodes[i]);
                  }
                  assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
                  pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
              }
              if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
                  compile_node(comp, pns1->nodes[0]);
                  EMIT(delete_subscr);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
                  assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
                  EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
              } else {
                  goto cannot_delete;
              }
          } else {
              goto cannot_delete;
          }
  
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
          pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
          if (MP_PARSE_NODE_IS_NULL(pn)) {
              goto cannot_delete;
          } else {
              assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
              mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
              // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
  
              if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
                  mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
                  if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
                      // sequence of one item, with trailing comma
                      assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
                      c_del_stmt(comp, pns->nodes[0]);
                  } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
                      // sequence of many items
                      int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                      c_del_stmt(comp, pns->nodes[0]);
                      for (int i = 0; i < n; i++) {
                          c_del_stmt(comp, pns1->nodes[i]);
                      }
                  } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
                      goto cannot_delete;
                  } else {
                      // sequence with 2 items
                      goto sequence_with_2_items;
                  }
              } else {
                  // sequence with 2 items
                  sequence_with_2_items:
                  c_del_stmt(comp, pns->nodes[0]);
                  c_del_stmt(comp, pns->nodes[1]);
              }
          }
      } else {
          // some arbitrary statement that we can't delete (eg del 1)
          goto cannot_delete;
      }
  
      return;
  
  cannot_delete:
      compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression");
  }
  
  STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
  }
  
  STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->break_label == INVALID_LABEL) {
          compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop");
      }
      assert(comp->cur_except_level >= comp->break_continue_except_level);
      EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
  }
  
  STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->continue_label == INVALID_LABEL) {
          compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop");
      }
      assert(comp->cur_except_level >= comp->break_continue_except_level);
      EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
  }
  
  STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->scope_cur->kind != SCOPE_FUNCTION) {
          compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function");
          return;
      }
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
          // no argument to 'return', so return None
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
      } else if (MICROPY_COMP_RETURN_IF_EXPR
          && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
          // special case when returning an if-expression; to match CPython optimisation
          mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
          mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
  
          uint l_fail = comp_next_label(comp);
          c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
          compile_node(comp, pns_test_if_expr->nodes[0]); // success value
          EMIT(return_value);
          EMIT_ARG(label_assign, l_fail);
          compile_node(comp, pns_test_if_else->nodes[1]); // failure value
      } else {
          compile_node(comp, pns->nodes[0]);
      }
      EMIT(return_value);
  }
  
  STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_node(comp, pns->nodes[0]);
      EMIT(pop_top);
  }
  
  STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
          // raise
          EMIT_ARG(raise_varargs, 0);
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
          // raise x from y
          pns = (mp_parse_node_struct_t*)pns->nodes[0];
          compile_node(comp, pns->nodes[0]);
          compile_node(comp, pns->nodes[1]);
          EMIT_ARG(raise_varargs, 2);
      } else {
          // raise x
          compile_node(comp, pns->nodes[0]);
          EMIT_ARG(raise_varargs, 1);
      }
  }
  
  // q_base holds the base of the name
  // eg   a -> q_base=a
  //      a.b.c -> q_base=a
  STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
      bool is_as = false;
      if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          // a name of the form x as y; unwrap it
          *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
          pn = pns->nodes[0];
          is_as = true;
      }
      if (MP_PARSE_NODE_IS_NULL(pn)) {
          // empty name (eg, from . import x)
          *q_base = MP_QSTR_;
          EMIT_ARG(import_name, MP_QSTR_); // import the empty string
      } else if (MP_PARSE_NODE_IS_ID(pn)) {
          // just a simple name
          qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
          if (!is_as) {
              *q_base = q_full;
          }
          EMIT_ARG(import_name, q_full);
      } else {
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          {
              // a name of the form a.b.c
              if (!is_as) {
                  *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              }
              int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
              int len = n - 1;
              for (int i = 0; i < n; i++) {
                  len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
              }
              char *q_ptr = mp_local_alloc(len);
              char *str_dest = q_ptr;
              for (int i = 0; i < n; i++) {
                  if (i > 0) {
                      *str_dest++ = '.';
                  }
                  size_t str_src_len;
                  const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
                  memcpy(str_dest, str_src, str_src_len);
                  str_dest += str_src_len;
              }
              qstr q_full = qstr_from_strn(q_ptr, len);
              mp_local_free(q_ptr);
              EMIT_ARG(import_name, q_full);
              if (is_as) {
                  for (int i = 1; i < n; i++) {
                      EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
                  }
              }
          }
      }
  }
  
  STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
      EMIT_ARG(load_const_small_int, 0); // level 0 import
      EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
      qstr q_base;
      do_import_name(comp, pn, &q_base);
      compile_store_id(comp, q_base);
  }
  
  STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
      apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
  }
  
  STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
      mp_parse_node_t pn_import_source = pns->nodes[0];
  
      // extract the preceding .'s (if any) for a relative import, to compute the import level
      uint import_level = 0;
      do {
          mp_parse_node_t pn_rel;
          if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
              // This covers relative imports with dots only like "from .. import"
              pn_rel = pn_import_source;
              pn_import_source = MP_PARSE_NODE_NULL;
          } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
              // This covers relative imports starting with dot(s) like "from .foo import"
              mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source;
              pn_rel = pns_2b->nodes[0];
              pn_import_source = pns_2b->nodes[1];
              assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
          } else {
              // Not a relative import
              break;
          }
  
          // get the list of . and/or ...'s
          mp_parse_node_t *nodes;
          int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);
  
          // count the total number of .'s
          for (int i = 0; i < n; i++) {
              if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
                  import_level++;
              } else {
                  // should be an MP_TOKEN_ELLIPSIS
                  import_level += 3;
              }
          }
      } while (0);
  
      if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
          EMIT_ARG(load_const_small_int, import_level);
  
          // build the "fromlist" tuple
          EMIT_ARG(load_const_str, MP_QSTR__star_);
          EMIT_ARG(build_tuple, 1);
  
          // do the import
          qstr dummy_q;
          do_import_name(comp, pn_import_source, &dummy_q);
          EMIT(import_star);
  
      } else {
          EMIT_ARG(load_const_small_int, import_level);
  
          // build the "fromlist" tuple
          mp_parse_node_t *pn_nodes;
          int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
          for (int i = 0; i < n; i++) {
              assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
              mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
              qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
              EMIT_ARG(load_const_str, id2);
          }
          EMIT_ARG(build_tuple, n);
  
          // do the import
          qstr dummy_q;
          do_import_name(comp, pn_import_source, &dummy_q);
          for (int i = 0; i < n; i++) {
              assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
              mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
              qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
              EMIT_ARG(import_from, id2);
              if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
                  compile_store_id(comp, id2);
              } else {
                  compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
              }
          }
          EMIT(pop_top);
      }
  }
  
  STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
      bool added;
      id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
      if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
          compile_syntax_error(comp, pn, "identifier redefined as global");
          return;
      }
      id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
  
      // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
      id_info = scope_find_global(comp->scope_cur, qst);
      if (id_info != NULL) {
          id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
      }
  }
  
  STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->pass == MP_PASS_SCOPE) {
          mp_parse_node_t *nodes;
          int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
          for (int i = 0; i < n; i++) {
              compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
          }
      }
  }
  
  STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
      bool added;
      id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
      if (added) {
          scope_find_local_and_close_over(comp->scope_cur, id_info, qst);
          if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
              compile_syntax_error(comp, pn, "no binding for nonlocal found");
          }
      } else if (id_info->kind != ID_INFO_KIND_FREE) {
          compile_syntax_error(comp, pn, "identifier redefined as nonlocal");
      }
  }
  
  STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->pass == MP_PASS_SCOPE) {
          if (comp->scope_cur->kind == SCOPE_MODULE) {
              compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code");
              return;
          }
          mp_parse_node_t *nodes;
          int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
          for (int i = 0; i < n; i++) {
              compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
          }
      }
  }
  
  STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // with optimisations enabled we don't compile assertions
      if (MP_STATE_VM(mp_optimise_value) != 0) {
          return;
      }
  
      uint l_end = comp_next_label(comp);
      c_if_cond(comp, pns->nodes[0], true, l_end);
      EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
      if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
          // assertion message
          compile_node(comp, pns->nodes[1]);
          EMIT_ARG(call_function, 1, 0, 0);
      }
      EMIT_ARG(raise_varargs, 1);
      EMIT_ARG(label_assign, l_end);
  }
  
  STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      uint l_end = comp_next_label(comp);
  
      // optimisation: don't emit anything when "if False"
      if (!mp_parse_node_is_const_false(pns->nodes[0])) {
          uint l_fail = comp_next_label(comp);
          c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
  
          compile_node(comp, pns->nodes[1]); // if block
  
          // optimisation: skip everything else when "if True"
          if (mp_parse_node_is_const_true(pns->nodes[0])) {
              goto done;
          }
  
          if (
              // optimisation: don't jump over non-existent elif/else blocks
              !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
              // optimisation: don't jump if last instruction was return
              && !EMIT(last_emit_was_return_value)
              ) {
              // jump over elif/else blocks
              EMIT_ARG(jump, l_end);
          }
  
          EMIT_ARG(label_assign, l_fail);
      }
  
      // compile elif blocks (if any)
      mp_parse_node_t *pn_elif;
      int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
      for (int i = 0; i < n_elif; i++) {
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
          mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i];
  
          // optimisation: don't emit anything when "if False"
          if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
              uint l_fail = comp_next_label(comp);
              c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
  
              compile_node(comp, pns_elif->nodes[1]); // elif block
  
              // optimisation: skip everything else when "elif True"
              if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
                  goto done;
              }
  
              // optimisation: don't jump if last instruction was return
              if (!EMIT(last_emit_was_return_value)) {
                  EMIT_ARG(jump, l_end);
              }
              EMIT_ARG(label_assign, l_fail);
          }
      }
  
      // compile else block
      compile_node(comp, pns->nodes[3]); // can be null
  
  done:
      EMIT_ARG(label_assign, l_end);
  }
  
  #define START_BREAK_CONTINUE_BLOCK \
      uint16_t old_break_label = comp->break_label; \
      uint16_t old_continue_label = comp->continue_label; \
      uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
      uint break_label = comp_next_label(comp); \
      uint continue_label = comp_next_label(comp); \
      comp->break_label = break_label; \
      comp->continue_label = continue_label; \
      comp->break_continue_except_level = comp->cur_except_level;
  
  #define END_BREAK_CONTINUE_BLOCK \
      comp->break_label = old_break_label; \
      comp->continue_label = old_continue_label; \
      comp->break_continue_except_level = old_break_continue_except_level;
  
  STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      START_BREAK_CONTINUE_BLOCK
  
      if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
          uint top_label = comp_next_label(comp);
          if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
              EMIT_ARG(jump, continue_label);
          }
          EMIT_ARG(label_assign, top_label);
          compile_node(comp, pns->nodes[1]); // body
          EMIT_ARG(label_assign, continue_label);
          c_if_cond(comp, pns->nodes[0], true, top_label); // condition
      }
  
      // break/continue apply to outer loop (if any) in the else block
      END_BREAK_CONTINUE_BLOCK
  
      compile_node(comp, pns->nodes[2]); // else
  
      EMIT_ARG(label_assign, break_label);
  }
  
  // This function compiles an optimised for-loop of the form:
  //      for <var> in range(<start>, <end>, <step>):
  //          <body>
  //      else:
  //          <else>
  // <var> must be an identifier and <step> must be a small-int.
  //
  // Semantics of for-loop require:
  //  - final failing value should not be stored in the loop variable
  //  - if the loop never runs, the loop variable should never be assigned
  //  - assignments to <var>, <end> or <step> in the body do not alter the loop
  //    (<step> is a constant for us, so no need to worry about it changing)
  //
  // If <end> is a small-int, then the stack during the for-loop contains just
  // the current value of <var>.  Otherwise, the stack contains <end> then the
  // current value of <var>.
  STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
      START_BREAK_CONTINUE_BLOCK
  
      uint top_label = comp_next_label(comp);
      uint entry_label = comp_next_label(comp);
  
      // put the end value on the stack if it's not a small-int constant
      bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
      if (end_on_stack) {
          compile_node(comp, pn_end);
      }
  
      // compile: start
      compile_node(comp, pn_start);
  
      EMIT_ARG(jump, entry_label);
      EMIT_ARG(label_assign, top_label);
  
      // duplicate next value and store it to var
      EMIT(dup_top);
      c_assign(comp, pn_var, ASSIGN_STORE);
  
      // compile body
      compile_node(comp, pn_body);
  
      EMIT_ARG(label_assign, continue_label);
  
      // compile: var + step
      compile_node(comp, pn_step);
      EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
  
      EMIT_ARG(label_assign, entry_label);
  
      // compile: if var <cond> end: goto top
      if (end_on_stack) {
          EMIT(dup_top_two);
          EMIT(rot_two);
      } else {
          EMIT(dup_top);
          compile_node(comp, pn_end);
      }
      assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
      if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
          EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
      } else {
          EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
      }
      EMIT_ARG(pop_jump_if, true, top_label);
  
      // break/continue apply to outer loop (if any) in the else block
      END_BREAK_CONTINUE_BLOCK
  
      // Compile the else block.  We must pop the iterator variables before
      // executing the else code because it may contain break/continue statements.
      uint end_label = 0;
      if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
          // discard final value of "var", and possible "end" value
          EMIT(pop_top);
          if (end_on_stack) {
              EMIT(pop_top);
          }
          compile_node(comp, pn_else);
          end_label = comp_next_label(comp);
          EMIT_ARG(jump, end_label);
          EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
      }
  
      EMIT_ARG(label_assign, break_label);
  
      // discard final value of var that failed the loop condition
      EMIT(pop_top);
  
      // discard <end> value if it's on the stack
      if (end_on_stack) {
          EMIT(pop_top);
      }
  
      if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
          EMIT_ARG(label_assign, end_label);
      }
  }
  
  STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
      // this is actually slower, but uses no heap memory
      // for viper it will be much, much faster
      if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
          mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1];
          if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
              && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
              && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pns_it->nodes[1]) == PN_trailer_paren) {
              mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0];
              mp_parse_node_t *args;
              int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
              mp_parse_node_t pn_range_start;
              mp_parse_node_t pn_range_end;
              mp_parse_node_t pn_range_step;
              bool optimize = false;
              if (1 <= n_args && n_args <= 3) {
                  optimize = true;
                  if (n_args == 1) {
                      pn_range_start = mp_parse_node_new_small_int(0);
                      pn_range_end = args[0];
                      pn_range_step = mp_parse_node_new_small_int(1);
                  } else if (n_args == 2) {
                      pn_range_start = args[0];
                      pn_range_end = args[1];
                      pn_range_step = mp_parse_node_new_small_int(1);
                  } else {
                      pn_range_start = args[0];
                      pn_range_end = args[1];
                      pn_range_step = args[2];
                      // the step must be a non-zero constant integer to do the optimisation
                      if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
                          || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
                          optimize = false;
                      }
                  }
                  // arguments must be able to be compiled as standard expressions
                  if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
                      int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start);
                      if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                          optimize = false;
                      }
                  }
                  if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
                      int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end);
                      if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                          optimize = false;
                      }
                  }
              }
              if (optimize) {
                  compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
                  return;
              }
          }
      }
  
      START_BREAK_CONTINUE_BLOCK
      comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
  
      uint pop_label = comp_next_label(comp);
  
      compile_node(comp, pns->nodes[1]); // iterator
      EMIT_ARG(get_iter, true);
      EMIT_ARG(label_assign, continue_label);
      EMIT_ARG(for_iter, pop_label);
      c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
      compile_node(comp, pns->nodes[2]); // body
      if (!EMIT(last_emit_was_return_value)) {
          EMIT_ARG(jump, continue_label);
      }
      EMIT_ARG(label_assign, pop_label);
      EMIT(for_iter_end);
  
      // break/continue apply to outer loop (if any) in the else block
      END_BREAK_CONTINUE_BLOCK
  
      compile_node(comp, pns->nodes[3]); // else (may be empty)
  
      EMIT_ARG(label_assign, break_label);
  }
  
  STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
      // setup code
      uint l1 = comp_next_label(comp);
      uint success_label = comp_next_label(comp);
  
      EMIT_ARG(setup_except, l1);
      compile_increase_except_level(comp);
  
      compile_node(comp, pn_body); // body
      EMIT(pop_block);
      EMIT_ARG(jump, success_label); // jump over exception handler
  
      EMIT_ARG(label_assign, l1); // start of exception handler
      EMIT(start_except_handler);
  
      // at this point the top of the stack contains the exception instance that was raised
  
      uint l2 = comp_next_label(comp);
  
      for (int i = 0; i < n_except; i++) {
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
          mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i];
  
          qstr qstr_exception_local = 0;
          uint end_finally_label = comp_next_label(comp);
  
          if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
              // this is a catch all exception handler
              if (i + 1 != n_except) {
                  compile_syntax_error(comp, pn_excepts[i], "default 'except' must be last");
                  compile_decrease_except_level(comp);
                  return;
              }
          } else {
              // this exception handler requires a match to a certain type of exception
              mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
              if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
                  mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr;
                  if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
                      // handler binds the exception to a local
                      pns_exception_expr = pns3->nodes[0];
                      qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
                  }
              }
              EMIT(dup_top);
              compile_node(comp, pns_exception_expr);
              EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
              EMIT_ARG(pop_jump_if, false, end_finally_label);
          }
  
          // either discard or store the exception instance
          if (qstr_exception_local == 0) {
              EMIT(pop_top);
          } else {
              compile_store_id(comp, qstr_exception_local);
          }
  
          uint l3 = 0;
          if (qstr_exception_local != 0) {
              l3 = comp_next_label(comp);
              EMIT_ARG(setup_finally, l3);
              compile_increase_except_level(comp);
          }
          compile_node(comp, pns_except->nodes[1]);
          if (qstr_exception_local != 0) {
              EMIT(pop_block);
          }
          EMIT(pop_except);
          if (qstr_exception_local != 0) {
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
              EMIT_ARG(label_assign, l3);
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
              compile_store_id(comp, qstr_exception_local);
              compile_delete_id(comp, qstr_exception_local);
  
              compile_decrease_except_level(comp);
              EMIT(end_finally);
          }
          EMIT_ARG(jump, l2);
          EMIT_ARG(label_assign, end_finally_label);
          EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
      }
  
      compile_decrease_except_level(comp);
      EMIT(end_finally);
      EMIT(end_except_handler);
  
      EMIT_ARG(label_assign, success_label);
      compile_node(comp, pn_else); // else block, can be null
      EMIT_ARG(label_assign, l2);
  }
  
  STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
      uint l_finally_block = comp_next_label(comp);
  
      EMIT_ARG(setup_finally, l_finally_block);
      compile_increase_except_level(comp);
  
      if (n_except == 0) {
          assert(MP_PARSE_NODE_IS_NULL(pn_else));
          EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
          compile_node(comp, pn_body);
          EMIT_ARG(adjust_stack_size, -3);
      } else {
          compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
      }
      EMIT(pop_block);
      EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
      EMIT_ARG(label_assign, l_finally_block);
      compile_node(comp, pn_finally);
  
      compile_decrease_except_level(comp);
      EMIT(end_finally);
  }
  
  STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
      {
          mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
          if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
              // just try-finally
              compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
              // try-except and possibly else and/or finally
              mp_parse_node_t *pn_excepts;
              int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
              if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
                  // no finally
                  compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
              } else {
                  // have finally
                  compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]);
              }
          } else {
              // just try-except
              mp_parse_node_t *pn_excepts;
              int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
              compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
          }
      }
  }
  
  STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
      if (n == 0) {
          // no more pre-bits, compile the body of the with
          compile_node(comp, body);
      } else {
          uint l_end = comp_next_label(comp);
          if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
              // we need to allocate an extra label for the native emitter
              // it will use l_end+1 as an auxiliary label
              comp_next_label(comp);
          }
          if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
              // this pre-bit is of the form "a as b"
              mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
              compile_node(comp, pns->nodes[0]);
              EMIT_ARG(setup_with, l_end);
              c_assign(comp, pns->nodes[1], ASSIGN_STORE);
          } else {
              // this pre-bit is just an expression
              compile_node(comp, nodes[0]);
              EMIT_ARG(setup_with, l_end);
              EMIT(pop_top);
          }
          compile_increase_except_level(comp);
          // compile additional pre-bits and the body
          compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
          // finish this with block
          EMIT_ARG(with_cleanup, l_end);
          compile_decrease_except_level(comp);
          EMIT(end_finally);
      }
  }
  
  STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
      mp_parse_node_t *nodes;
      int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
      assert(n > 0);
  
      // compile in a nested fashion
      compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
  }
  
  STATIC void compile_yield_from(compiler_t *comp) {
      EMIT_ARG(get_iter, false);
      EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
      EMIT(yield_from);
  }
  
  #if MICROPY_PY_ASYNC_AWAIT
  STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
      EMIT_ARG(load_method, method, false);
      EMIT_ARG(call_method, 0, 0, 0);
      compile_yield_from(comp);
  }
  
  STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
  
      qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
      uint while_else_label = comp_next_label(comp);
      uint try_exception_label = comp_next_label(comp);
      uint try_else_label = comp_next_label(comp);
      uint try_finally_label = comp_next_label(comp);
  
      compile_node(comp, pns->nodes[1]); // iterator
      compile_await_object_method(comp, MP_QSTR___aiter__);
      compile_store_id(comp, context);
  
      START_BREAK_CONTINUE_BLOCK
  
      EMIT_ARG(label_assign, continue_label);
  
      EMIT_ARG(setup_except, try_exception_label);
      compile_increase_except_level(comp);
  
      compile_load_id(comp, context);
      compile_await_object_method(comp, MP_QSTR___anext__);
      c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
      EMIT(pop_block);
      EMIT_ARG(jump, try_else_label);
  
      EMIT_ARG(label_assign, try_exception_label);
      EMIT(start_except_handler);
      EMIT(dup_top);
      EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
      EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
      EMIT_ARG(pop_jump_if, false, try_finally_label);
      EMIT(pop_top); // pop exception instance
      EMIT(pop_except);
      EMIT_ARG(jump, while_else_label);
  
      EMIT_ARG(label_assign, try_finally_label);
      EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
      compile_decrease_except_level(comp);
      EMIT(end_finally);
      EMIT(end_except_handler);
  
      EMIT_ARG(label_assign, try_else_label);
      compile_node(comp, pns->nodes[2]); // body
  
      EMIT_ARG(jump, continue_label);
      // break/continue apply to outer loop (if any) in the else block
      END_BREAK_CONTINUE_BLOCK
  
      EMIT_ARG(label_assign, while_else_label);
      compile_node(comp, pns->nodes[3]); // else
  
      EMIT_ARG(label_assign, break_label);
  }
  
  STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
      if (n == 0) {
          // no more pre-bits, compile the body of the with
          compile_node(comp, body);
      } else {
          uint try_exception_label = comp_next_label(comp);
          uint no_reraise_label = comp_next_label(comp);
          uint try_else_label = comp_next_label(comp);
          uint end_label = comp_next_label(comp);
          qstr context;
  
          if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
              // this pre-bit is of the form "a as b"
              mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
              compile_node(comp, pns->nodes[0]);
              context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              compile_store_id(comp, context);
              compile_load_id(comp, context);
              compile_await_object_method(comp, MP_QSTR___aenter__);
              c_assign(comp, pns->nodes[1], ASSIGN_STORE);
          } else {
              // this pre-bit is just an expression
              compile_node(comp, nodes[0]);
              context = MP_PARSE_NODE_LEAF_ARG(nodes[0]);
              compile_store_id(comp, context);
              compile_load_id(comp, context);
              compile_await_object_method(comp, MP_QSTR___aenter__);
              EMIT(pop_top);
          }
  
          compile_load_id(comp, context);
          EMIT_ARG(load_method, MP_QSTR___aexit__, false);
  
          EMIT_ARG(setup_except, try_exception_label);
          compile_increase_except_level(comp);
          // compile additional pre-bits and the body
          compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
          // finish this with block
          EMIT(pop_block);
          EMIT_ARG(jump, try_else_label); // jump over exception handler
  
          EMIT_ARG(label_assign, try_exception_label); // start of exception handler
          EMIT(start_except_handler);
  
          // at this point the stack contains: ..., __aexit__, self, exc
          EMIT(dup_top);
          #if MICROPY_CPYTHON_COMPAT
          EMIT_ARG(load_attr, MP_QSTR___class__); // get type(exc)
          #else
          compile_load_id(comp, MP_QSTR_type);
          EMIT(rot_two);
          EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
          #endif
          EMIT(rot_two);
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
          // at this point the stack contains: ..., __aexit__, self, type(exc), exc, None
          EMIT_ARG(call_method, 3, 0, 0);
  
          compile_yield_from(comp);
          EMIT_ARG(pop_jump_if, true, no_reraise_label);
          EMIT_ARG(raise_varargs, 0);
  
          EMIT_ARG(label_assign, no_reraise_label);
          EMIT(pop_except);
          EMIT_ARG(jump, end_label);
  
          EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc
          compile_decrease_except_level(comp);
          EMIT(end_finally);
          EMIT(end_except_handler);
  
          EMIT_ARG(label_assign, try_else_label); // start of try-else handler
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          EMIT(dup_top);
          EMIT(dup_top);
          EMIT_ARG(call_method, 3, 0, 0);
          compile_yield_from(comp);
          EMIT(pop_top);
  
          EMIT_ARG(label_assign, end_label);
  
      }
  }
  
  STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
      mp_parse_node_t *nodes;
      int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
      assert(n > 0);
  
      // compile in a nested fashion
      compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
  }
  
  STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
      mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
      if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
          // async def
          compile_funcdef(comp, pns0);
          scope_t *fscope = (scope_t*)pns0->nodes[4];
          fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
      } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
          // async for
          compile_async_for_stmt(comp, pns0);
      } else {
          // async with
          assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
          compile_async_with_stmt(comp, pns0);
      }
  }
  #endif
  
  STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
          if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
              // for REPL, evaluate then print the expression
              compile_load_id(comp, MP_QSTR___repl_print__);
              compile_node(comp, pns->nodes[0]);
              EMIT_ARG(call_function, 1, 0, 0);
              EMIT(pop_top);
  
          } else {
              // for non-REPL, evaluate then discard the expression
              if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
                  || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
                  // do nothing with a lonely constant
              } else {
                  compile_node(comp, pns->nodes[0]); // just an expression
                  EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
              }
          }
      } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
          mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
          int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
          if (kind == PN_expr_stmt_augassign) {
              c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
              compile_node(comp, pns1->nodes[1]); // rhs
              assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
              mp_binary_op_t op;
              switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) {
                  case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
                  case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
                  case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
                  case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
                  case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
                  case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
                  case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
                  case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
                  case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
                  case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
                  case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
                  case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
              }
              EMIT_ARG(binary_op, op);
              c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
          } else if (kind == PN_expr_stmt_assign_list) {
              int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
              compile_node(comp, pns1->nodes[rhs]); // rhs
              // following CPython, we store left-most first
              if (rhs > 0) {
                  EMIT(dup_top);
              }
              c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
              for (int i = 0; i < rhs; i++) {
                  if (i + 1 < rhs) {
                      EMIT(dup_top);
                  }
                  c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
              }
          } else {
          plain_assign:
              #if MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
              if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
                  && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)) {
                  mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
                  pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
                  uint32_t n_pns0 = MP_PARSE_NODE_STRUCT_NUM_NODES(pns0);
                  // Can only optimise a tuple-to-tuple assignment when all of the following hold:
                  //  - equal number of items in LHS and RHS tuples
                  //  - 2 or 3 items in the tuples
                  //  - there are no star expressions in the LHS tuple
                  if (n_pns0 == MP_PARSE_NODE_STRUCT_NUM_NODES(pns1)
                      && (n_pns0 == 2
                          #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                          || n_pns0 == 3
                          #endif
                          )
                      && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
                      && !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
                      #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                      && (n_pns0 == 2 || !MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr))
                      #endif
                      ) {
                      // Optimisation for a, b = c, d or a, b, c = d, e, f
                      compile_node(comp, pns1->nodes[0]); // rhs
                      compile_node(comp, pns1->nodes[1]); // rhs
                      #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                      if (n_pns0 == 3) {
                          compile_node(comp, pns1->nodes[2]); // rhs
                          EMIT(rot_three);
                      }
                      #endif
                      EMIT(rot_two);
                      c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
                      c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
                      #if MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                      if (n_pns0 == 3) {
                          c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
                      }
                      #endif
                      return;
                  }
              }
              #endif
  
              compile_node(comp, pns->nodes[1]); // rhs
              c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
          }
      } else {
          goto plain_assign;
      }
  }
  
  STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) {
      int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
      compile_node(comp, pns->nodes[0]);
      for (int i = 1; i < num_nodes; i += 1) {
          compile_node(comp, pns->nodes[i]);
          EMIT_ARG(binary_op, binary_op);
      }
  }
  
  STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
      mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1];
  
      uint l_fail = comp_next_label(comp);
      uint l_end = comp_next_label(comp);
      c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
      compile_node(comp, pns->nodes[0]); // success value
      EMIT_ARG(jump, l_end);
      EMIT_ARG(label_assign, l_fail);
      EMIT_ARG(adjust_stack_size, -1); // adjust stack size
      compile_node(comp, pns_test_if_else->nodes[1]); // failure value
      EMIT_ARG(label_assign, l_end);
  }
  
  STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->pass == MP_PASS_SCOPE) {
          // create a new scope for this lambda
          scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
          // store the lambda scope so the compiling function (this one) can use it at each pass
          pns->nodes[2] = (mp_parse_node_t)s;
      }
  
      // get the scope for this lambda
      scope_t *this_scope = (scope_t*)pns->nodes[2];
  
      // compile the lambda definition
      compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
  }
  
  STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) {
      uint l_end = comp_next_label(comp);
      int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
      for (int i = 0; i < n; i += 1) {
          compile_node(comp, pns->nodes[i]);
          if (i + 1 < n) {
              EMIT_ARG(jump_if_or_pop, cond, l_end);
          }
      }
      EMIT_ARG(label_assign, l_end);
  }
  
  STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_or_and_test(comp, pns, true);
  }
  
  STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_or_and_test(comp, pns, false);
  }
  
  STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_node(comp, pns->nodes[0]);
      EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
  }
  
  STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
      int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
      compile_node(comp, pns->nodes[0]);
      bool multi = (num_nodes > 3);
      uint l_fail = 0;
      if (multi) {
          l_fail = comp_next_label(comp);
      }
      for (int i = 1; i + 1 < num_nodes; i += 2) {
          compile_node(comp, pns->nodes[i + 1]);
          if (i + 2 < num_nodes) {
              EMIT(dup_top);
              EMIT(rot_three);
          }
          if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
              mp_binary_op_t op;
              switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) {
                  case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
                  case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
                  case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
                  case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
                  case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
                  case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
                  case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
              }
              EMIT_ARG(binary_op, op);
          } else {
              assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
              mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i];
              int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
              if (kind == PN_comp_op_not_in) {
                  EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
              } else {
                  assert(kind == PN_comp_op_is); // should be
                  if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
                      EMIT_ARG(binary_op, MP_BINARY_OP_IS);
                  } else {
                      EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
                  }
              }
          }
          if (i + 2 < num_nodes) {
              EMIT_ARG(jump_if_or_pop, false, l_fail);
          }
      }
      if (multi) {
          uint l_end = comp_next_label(comp);
          EMIT_ARG(jump, l_end);
          EMIT_ARG(label_assign, l_fail);
          EMIT_ARG(adjust_stack_size, 1);
          EMIT(rot_two);
          EMIT(pop_top);
          EMIT_ARG(label_assign, l_end);
      }
  }
  
  STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target");
  }
  
  STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      c_binary_op(comp, pns, MP_BINARY_OP_OR);
  }
  
  STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      c_binary_op(comp, pns, MP_BINARY_OP_XOR);
  }
  
  STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      c_binary_op(comp, pns, MP_BINARY_OP_AND);
  }
  
  STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
      int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
      compile_node(comp, pns->nodes[0]);
      for (int i = 1; i + 1 < num_nodes; i += 2) {
          compile_node(comp, pns->nodes[i + 1]);
          mp_binary_op_t op;
          mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
          switch (tok) {
              case MP_TOKEN_OP_PLUS:      op = MP_BINARY_OP_ADD; break;
              case MP_TOKEN_OP_MINUS:     op = MP_BINARY_OP_SUBTRACT; break;
              case MP_TOKEN_OP_STAR:      op = MP_BINARY_OP_MULTIPLY; break;
              case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break;
              case MP_TOKEN_OP_SLASH:     op = MP_BINARY_OP_TRUE_DIVIDE; break;
              case MP_TOKEN_OP_PERCENT:   op = MP_BINARY_OP_MODULO; break;
              case MP_TOKEN_OP_DBL_LESS:  op = MP_BINARY_OP_LSHIFT; break;
              default:
                  assert(tok == MP_TOKEN_OP_DBL_MORE);
                  op = MP_BINARY_OP_RSHIFT;
                  break;
          }
          EMIT_ARG(binary_op, op);
      }
  }
  
  STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_node(comp, pns->nodes[1]);
      mp_unary_op_t op;
      mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
      switch (tok) {
          case MP_TOKEN_OP_PLUS:  op = MP_UNARY_OP_POSITIVE; break;
          case MP_TOKEN_OP_MINUS: op = MP_UNARY_OP_NEGATIVE; break;
          default:
              assert(tok == MP_TOKEN_OP_TILDE);
              op = MP_UNARY_OP_INVERT;
              break;
      }
      EMIT_ARG(unary_op, op);
  }
  
  STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // compile the subject of the expression
      compile_node(comp, pns->nodes[0]);
  
      // compile_atom_expr_await may call us with a NULL node
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
          return;
      }
  
      // get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
      size_t num_trail = 1;
      mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t**)&pns->nodes[1];
      if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
          num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
          pns_trail = (mp_parse_node_struct_t**)&pns_trail[0]->nodes[0];
      }
  
      // the current index into the array of trailers
      size_t i = 0;
  
      // handle special super() call
      if (comp->scope_cur->kind == SCOPE_FUNCTION
          && MP_PARSE_NODE_IS_ID(pns->nodes[0])
          && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
          && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
          && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
          // at this point we have matched "super()" within a function
  
          // load the class for super to search for a parent
          compile_load_id(comp, MP_QSTR___class__);
  
          // look for first argument to function (assumes it's "self")
          bool found = false;
          id_info_t *id = &comp->scope_cur->id_info[0];
          for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
              if (id->flags & ID_FLAG_IS_PARAM) {
                  // first argument found; load it
                  compile_load_id(comp, id->qst);
                  found = true;
                  break;
              }
          }
          if (!found) {
              compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
                  "super() can't find self"); // really a TypeError
              return;
          }
  
          if (num_trail >= 3
              && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
              && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
              // optimisation for method calls super().f(...), to eliminate heap allocation
              mp_parse_node_struct_t *pns_period = pns_trail[1];
              mp_parse_node_struct_t *pns_paren = pns_trail[2];
              EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
              compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
              i = 3;
          } else {
              // a super() call
              EMIT_ARG(call_function, 2, 0, 0);
              i = 1;
          }
      }
  
      // compile the remaining trailers
      for (; i < num_trail; i++) {
          if (i + 1 < num_trail
              && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
              && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
              // optimisation for method calls a.f(...), following PyPy
              mp_parse_node_struct_t *pns_period = pns_trail[i];
              mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
              EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
              compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
              i += 1;
          } else {
              // node is one of: trailer_paren, trailer_bracket, trailer_period
              compile_node(comp, (mp_parse_node_t)pns_trail[i]);
          }
      }
  }
  
  STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
      EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
  }
  
  STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
      // function to call is on top of stack
  
      // get the list of arguments
      mp_parse_node_t *args;
      int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);
  
      // compile the arguments
      // Rather than calling compile_node on the list, we go through the list of args
      // explicitly here so that we can count the number of arguments and give sensible
      // error messages.
      int n_positional = n_positional_extra;
      uint n_keyword = 0;
      uint star_flags = 0;
      mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
      for (int i = 0; i < n_args; i++) {
          if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
              mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i];
              if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
                  if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
                      compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x");
                      return;
                  }
                  star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
                  star_args_node = pns_arg;
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
                  if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
                      compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x");
                      return;
                  }
                  star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
                  dblstar_args_node = pns_arg;
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
                  if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
                      if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
                          compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id");
                          return;
                      }
                      EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
                      compile_node(comp, pns_arg->nodes[1]);
                      n_keyword += 1;
                  } else {
                      compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
                      n_positional++;
                  }
              } else {
                  goto normal_argument;
              }
          } else {
              normal_argument:
              if (star_flags) {
                  compile_syntax_error(comp, args[i], "non-keyword arg after */**");
                  return;
              }
              if (n_keyword > 0) {
                  compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg");
                  return;
              }
              compile_node(comp, args[i]);
              n_positional++;
          }
      }
  
      // compile the star/double-star arguments if we had them
      // if we had one but not the other then we load "null" as a place holder
      if (star_flags != 0) {
          if (star_args_node == NULL) {
              EMIT(load_null);
          } else {
              compile_node(comp, star_args_node->nodes[0]);
          }
          if (dblstar_args_node == NULL) {
              EMIT(load_null);
          } else {
              compile_node(comp, dblstar_args_node->nodes[0]);
          }
      }
  
      // emit the function/method call
      if (is_method_call) {
          EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
      } else {
          EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
      }
  }
  
  // pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
  STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
      assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
      assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
      mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
  
      if (comp->pass == MP_PASS_SCOPE) {
          // create a new scope for this comprehension
          scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
          // store the comprehension scope so the compiling function (this one) can use it at each pass
          pns_comp_for->nodes[3] = (mp_parse_node_t)s;
      }
  
      // get the scope for this comprehension
      scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3];
  
      // compile the comprehension
      close_over_variables_etc(comp, this_scope, 0, 0);
  
      compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
      if (kind == SCOPE_GEN_EXPR) {
          EMIT_ARG(get_iter, false);
      }
      EMIT_ARG(call_function, 1, 0, 0);
  }
  
  STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
          // an empty tuple
          c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
      } else {
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
          pns = (mp_parse_node_struct_t*)pns->nodes[0];
          assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
          if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
              mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
              if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                  // tuple of one item, with trailing comma
                  assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                  c_tuple(comp, pns->nodes[0], NULL);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                  // tuple of many items
                  c_tuple(comp, pns->nodes[0], pns2);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                  // generator expression
                  compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
              } else {
                  // tuple with 2 items
                  goto tuple_with_2_items;
              }
          } else {
              // tuple with 2 items
              tuple_with_2_items:
              c_tuple(comp, MP_PARSE_NODE_NULL, pns);
          }
      }
  }
  
  STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
          // empty list
          EMIT_ARG(build_list, 0);
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
          mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0];
          if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
              mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1];
              if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
                  // list of one item, with trailing comma
                  assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
                  compile_node(comp, pns2->nodes[0]);
                  EMIT_ARG(build_list, 1);
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
                  // list of many items
                  compile_node(comp, pns2->nodes[0]);
                  compile_generic_all_nodes(comp, pns3);
                  EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3));
              } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
                  // list comprehension
                  compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
              } else {
                  // list with 2 items
                  goto list_with_2_items;
              }
          } else {
              // list with 2 items
              list_with_2_items:
              compile_node(comp, pns2->nodes[0]);
              compile_node(comp, pns2->nodes[1]);
              EMIT_ARG(build_list, 2);
          }
      } else {
          // list with 1 item
          compile_node(comp, pns->nodes[0]);
          EMIT_ARG(build_list, 1);
      }
  }
  
  STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
      mp_parse_node_t pn = pns->nodes[0];
      if (MP_PARSE_NODE_IS_NULL(pn)) {
          // empty dict
          EMIT_ARG(build_map, 0);
      } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
          pns = (mp_parse_node_struct_t*)pn;
          if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
              // dict with one element
              EMIT_ARG(build_map, 1);
              compile_node(comp, pn);
              EMIT(store_map);
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
              assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
              mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
              if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
                  // dict/set with multiple elements
  
                  // get tail elements (2nd, 3rd, ...)
                  mp_parse_node_t *nodes;
                  int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
  
                  // first element sets whether it's a dict or set
                  bool is_dict;
                  if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                      // a dictionary
                      EMIT_ARG(build_map, 1 + n);
                      compile_node(comp, pns->nodes[0]);
                      EMIT(store_map);
                      is_dict = true;
                  } else {
                      // a set
                      compile_node(comp, pns->nodes[0]); // 1st value of set
                      is_dict = false;
                  }
  
                  // process rest of elements
                  for (int i = 0; i < n; i++) {
                      mp_parse_node_t pn_i = nodes[i];
                      bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
                      compile_node(comp, pn_i);
                      if (is_dict) {
                          if (!is_key_value) {
                              if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                  compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                              } else {
                                  compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dict");
                              }
                              return;
                          }
                          EMIT(store_map);
                      } else {
                          if (is_key_value) {
                              if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                  compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                              } else {
                                  compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set");
                              }
                              return;
                          }
                      }
                  }
  
                  #if MICROPY_PY_BUILTINS_SET
                  // if it's a set, build it
                  if (!is_dict) {
                      EMIT_ARG(build_set, 1 + n);
                  }
                  #endif
              } else {
                  assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
                  // dict/set comprehension
                  if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                      // a dictionary comprehension
                      compile_comprehension(comp, pns, SCOPE_DICT_COMP);
                  } else {
                      // a set comprehension
                      compile_comprehension(comp, pns, SCOPE_SET_COMP);
                  }
              }
          } else {
              // set with one element
              goto set_with_one_element;
          }
      } else {
          // set with one element
          set_with_one_element:
          #if MICROPY_PY_BUILTINS_SET
          compile_node(comp, pn);
          EMIT_ARG(build_set, 1);
          #else
          assert(0);
          #endif
      }
  }
  
  STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
  }
  
  STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // object who's index we want is on top of stack
      compile_node(comp, pns->nodes[0]); // the index
      EMIT(load_subscr);
  }
  
  STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // object who's attribute we want is on top of stack
      EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get
  }
  
  #if MICROPY_PY_BUILTINS_SLICE
  STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) {
      assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
      mp_parse_node_t pn = pns->nodes[0];
      if (MP_PARSE_NODE_IS_NULL(pn)) {
          // [?:]
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          EMIT_ARG(build_slice, 2);
      } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
          pns = (mp_parse_node_struct_t*)pn;
          if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
              pn = pns->nodes[0];
              if (MP_PARSE_NODE_IS_NULL(pn)) {
                  // [?::]
                  EMIT_ARG(build_slice, 2);
              } else {
                  // [?::x]
                  compile_node(comp, pn);
                  EMIT_ARG(build_slice, 3);
              }
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
              compile_node(comp, pns->nodes[0]);
              assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
              pns = (mp_parse_node_struct_t*)pns->nodes[1];
              assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
              if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                  // [?:x:]
                  EMIT_ARG(build_slice, 2);
              } else {
                  // [?:x:x]
                  compile_node(comp, pns->nodes[0]);
                  EMIT_ARG(build_slice, 3);
              }
          } else {
              // [?:x]
              compile_node(comp, pn);
              EMIT_ARG(build_slice, 2);
          }
      } else {
          // [?:x]
          compile_node(comp, pn);
          EMIT_ARG(build_slice, 2);
      }
  }
  
  STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
      compile_node(comp, pns->nodes[0]); // start of slice
      assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
      compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]);
  }
  
  STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) {
      EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
      compile_subscript_3_helper(comp, pns);
  }
  #endif // MICROPY_PY_BUILTINS_SLICE
  
  STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
      // if this is called then we are compiling a dict key:value pair
      compile_node(comp, pns->nodes[1]); // value
      compile_node(comp, pns->nodes[0]); // key
  }
  
  STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
      qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
      // store class object into class name
      compile_store_id(comp, cname);
  }
  
  STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
          compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function");
          return;
      }
      if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          EMIT(yield_value);
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
          pns = (mp_parse_node_struct_t*)pns->nodes[0];
          compile_node(comp, pns->nodes[0]);
          compile_yield_from(comp);
      } else {
          compile_node(comp, pns->nodes[0]);
          EMIT(yield_value);
      }
  }
  
  #if MICROPY_PY_ASYNC_AWAIT
  STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
      if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
          compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function");
          return;
      }
      compile_atom_expr_normal(comp, pns);
      compile_yield_from(comp);
  }
  #endif
  
  STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
      #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
      // nodes are 32-bit pointers, but need to extract 64-bit object
      return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
      #else
      return (mp_obj_t)pns->nodes[0];
      #endif
  }
  
  STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
      EMIT_ARG(load_const_obj, get_const_object(pns));
  }
  
  typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*);
  STATIC const compile_function_t compile_function[] = {
  // only define rules with a compile function
  #define c(f) compile_##f
  #define DEF_RULE(rule, comp, kind, ...) comp,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef c
  #undef DEF_RULE
  #undef DEF_RULE_NC
      compile_const_object,
  };
  
  STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
      if (MP_PARSE_NODE_IS_NULL(pn)) {
          // pass
      } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
          mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
          #if MICROPY_DYNAMIC_COMPILER
          mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
          if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
              // integer fits in target runtime's small-int
              EMIT_ARG(load_const_small_int, arg);
          } else {
              // integer doesn't fit, so create a multi-precision int object
              // (but only create the actual object on the last pass)
              if (comp->pass != MP_PASS_EMIT) {
                  EMIT_ARG(load_const_obj, mp_const_none);
              } else {
                  EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
              }
          }
          #else
          EMIT_ARG(load_const_small_int, arg);
          #endif
      } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
          uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
          switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
              case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break;
              case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break;
              case MP_PARSE_NODE_BYTES:
                  // only create and load the actual bytes object on the last pass
                  if (comp->pass != MP_PASS_EMIT) {
                      EMIT_ARG(load_const_obj, mp_const_none);
                  } else {
                      size_t len;
                      const byte *data = qstr_data(arg, &len);
                      EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
                  }
                  break;
              case MP_PARSE_NODE_TOKEN: default:
                  if (arg == MP_TOKEN_NEWLINE) {
                      // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
                      // or when single_input lets through a NEWLINE (user enters a blank line)
                      // do nothing
                  } else {
                    EMIT_ARG(load_const_tok, arg);
                  }
                  break;
          }
      } else {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          EMIT_ARG(set_source_line, pns->source_line);
          assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
          compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
          f(comp, pns);
      }
  }
  
  STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
      // check that **kw is last
      if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
          compile_syntax_error(comp, pn, "invalid syntax");
          return;
      }
  
      qstr param_name = MP_QSTR_NULL;
      uint param_flag = ID_FLAG_IS_PARAM;
      if (MP_PARSE_NODE_IS_ID(pn)) {
          param_name = MP_PARSE_NODE_LEAF_ARG(pn);
          if (comp->have_star) {
              // comes after a star, so counts as a keyword-only parameter
              comp->scope_cur->num_kwonly_args += 1;
          } else {
              // comes before a star, so counts as a positional parameter
              comp->scope_cur->num_pos_args += 1;
          }
      } else {
          assert(MP_PARSE_NODE_IS_STRUCT(pn));
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
              param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              if (comp->have_star) {
                  // comes after a star, so counts as a keyword-only parameter
                  comp->scope_cur->num_kwonly_args += 1;
              } else {
                  // comes before a star, so counts as a positional parameter
                  comp->scope_cur->num_pos_args += 1;
              }
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
              if (comp->have_star) {
                  // more than one star
                  compile_syntax_error(comp, pn, "invalid syntax");
                  return;
              }
              comp->have_star = true;
              param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
              if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                  // bare star
                  // TODO see http://www.python.org/dev/peps/pep-3102/
                  //assert(comp->scope_cur->num_dict_params == 0);
              } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
                  // named star
                  comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                  param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              } else {
                  assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
                  // named star with possible annotation
                  comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                  pns = (mp_parse_node_struct_t*)pns->nodes[0];
                  param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              }
          } else {
              assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
              param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
              param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
              comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
          }
      }
  
      if (param_name != MP_QSTR_NULL) {
          bool added;
          id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
          if (!added) {
              compile_syntax_error(comp, pn, "name reused for argument");
              return;
          }
          id_info->kind = ID_INFO_KIND_LOCAL;
          id_info->flags = param_flag;
      }
  }
  
  STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
      compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
  }
  
  STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
      compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
  }
  
  #if MICROPY_EMIT_NATIVE
  STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) {
      if (!MP_PARSE_NODE_IS_STRUCT(pn)) {
          // no annotation
          return;
      }
  
      mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
      if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) {
          // named parameter with possible annotation
          // fallthrough
      } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) {
          if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
              // named star with possible annotation
              pns = (mp_parse_node_struct_t*)pns->nodes[0];
              // fallthrough
          } else {
              // no annotation
              return;
          }
      } else {
          assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star);
          // double star with possible annotation
          // fallthrough
      }
  
      mp_parse_node_t pn_annotation = pns->nodes[1];
  
      if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
          qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
          id_info_t *id_info = scope_find(comp->scope_cur, param_name);
          assert(id_info != NULL);
  
          if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
              qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
              EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
          } else {
              compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier");
          }
      }
  }
  #endif // MICROPY_EMIT_NATIVE
  
  STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
      uint l_top = comp_next_label(comp);
      uint l_end = comp_next_label(comp);
      EMIT_ARG(label_assign, l_top);
      EMIT_ARG(for_iter, l_end);
      c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
      mp_parse_node_t pn_iter = pns_comp_for->nodes[2];
  
      tail_recursion:
      if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
          // no more nested if/for; compile inner expression
          compile_node(comp, pn_inner_expr);
          if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
              EMIT(yield_value);
              EMIT(pop_top);
          } else {
              EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
          }
      } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_if) {
          // if condition
          mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter;
          c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
          pn_iter = pns_comp_if->nodes[1];
          goto tail_recursion;
      } else {
          assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_for); // should be
          // for loop
          mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter;
          compile_node(comp, pns_comp_for2->nodes[1]);
          EMIT_ARG(get_iter, true);
          compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
      }
  
      EMIT_ARG(jump, l_top);
      EMIT_ARG(label_assign, l_end);
      EMIT(for_iter_end);
  }
  
  STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
  #if MICROPY_ENABLE_DOC_STRING
      // see http://www.python.org/dev/peps/pep-0257/
  
      // look for the first statement
      if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
          // a statement; fall through
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
          // file input; find the first non-newline node
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
          for (int i = 0; i < num_nodes; i++) {
              pn = pns->nodes[i];
              if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
                  // not a newline, so this is the first statement; finish search
                  break;
              }
          }
          // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
          // a list of statements; get the first one
          pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
      } else {
          return;
      }
  
      // check the first statement for a doc string
      if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
                  && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
              || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
                  && MP_OBJ_IS_STR(get_const_object((mp_parse_node_struct_t*)pns->nodes[0])))) {
                  // compile the doc string
                  compile_node(comp, pns->nodes[0]);
                  // store the doc string
                  compile_store_id(comp, MP_QSTR___doc__);
          }
      }
  #else
      (void)comp;
      (void)pn;
  #endif
  }
  
  STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
      comp->pass = pass;
      comp->scope_cur = scope;
      comp->next_label = 0;
      EMIT_ARG(start_pass, pass, scope);
  
      if (comp->pass == MP_PASS_SCOPE) {
          // reset maximum stack sizes in scope
          // they will be computed in this first pass
          scope->stack_size = 0;
          scope->exc_stack_size = 0;
      }
  
      // compile
      if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
          assert(scope->kind == SCOPE_MODULE);
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
          compile_node(comp, pns->nodes[0]); // compile the expression
          EMIT(return_value);
      } else if (scope->kind == SCOPE_MODULE) {
          if (!comp->is_repl) {
              check_for_doc_string(comp, scope->pn);
          }
          compile_node(comp, scope->pn);
          EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          EMIT(return_value);
      } else if (scope->kind == SCOPE_FUNCTION) {
          assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
          assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
  
          // work out number of parameters, keywords and default parameters, and add them to the id_info array
          // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
          if (comp->pass == MP_PASS_SCOPE) {
              comp->have_star = false;
              apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
          }
          #if MICROPY_EMIT_NATIVE
          else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
              // compile annotations; only needed on latter compiler passes
              // only needed for viper emitter
  
              // argument annotations
              apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations);
  
              // pns->nodes[2] is return/whole function annotation
              mp_parse_node_t pn_annotation = pns->nodes[2];
              if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
                  // nodes[2] can be null or a test-expr
                  if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
                      qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
                      EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
                  } else {
                      compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
                  }
              }
          }
          #endif // MICROPY_EMIT_NATIVE
  
          compile_node(comp, pns->nodes[3]); // 3 is function body
          // emit return if it wasn't the last opcode
          if (!EMIT(last_emit_was_return_value)) {
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
              EMIT(return_value);
          }
      } else if (scope->kind == SCOPE_LAMBDA) {
          assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
          assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
  
          // work out number of parameters, keywords and default parameters, and add them to the id_info array
          // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
          if (comp->pass == MP_PASS_SCOPE) {
              comp->have_star = false;
              apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
          }
  
          compile_node(comp, pns->nodes[1]); // 1 is lambda body
  
          // if the lambda is a generator, then we return None, not the result of the expression of the lambda
          if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
              EMIT(pop_top);
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          }
          EMIT(return_value);
      } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
          // a bit of a hack at the moment
  
          assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
          assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
          assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
          mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
  
          // We need a unique name for the comprehension argument (the iterator).
          // CPython uses .0, but we should be able to use anything that won't
          // clash with a user defined variable.  Best to use an existing qstr,
          // so we use the blank qstr.
          qstr qstr_arg = MP_QSTR_;
          if (comp->pass == MP_PASS_SCOPE) {
              bool added;
              id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
              assert(added);
              id_info->kind = ID_INFO_KIND_LOCAL;
              scope->num_pos_args = 1;
          }
  
          if (scope->kind == SCOPE_LIST_COMP) {
              EMIT_ARG(build_list, 0);
          } else if (scope->kind == SCOPE_DICT_COMP) {
              EMIT_ARG(build_map, 0);
          #if MICROPY_PY_BUILTINS_SET
          } else if (scope->kind == SCOPE_SET_COMP) {
              EMIT_ARG(build_set, 0);
          #endif
          }
  
          // There are 4 slots on the stack for the iterator, and the first one is
          // NULL to indicate that the second one points to the iterator object.
          if (scope->kind == SCOPE_GEN_EXPR) {
              // TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4
              EMIT(load_null);
              compile_load_id(comp, qstr_arg);
              EMIT(load_null);
              EMIT(load_null);
          } else {
              compile_load_id(comp, qstr_arg);
              EMIT_ARG(get_iter, true);
          }
  
          compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);
  
          if (scope->kind == SCOPE_GEN_EXPR) {
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          }
          EMIT(return_value);
      } else {
          assert(scope->kind == SCOPE_CLASS);
          assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
          assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
  
          if (comp->pass == MP_PASS_SCOPE) {
              bool added;
              id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
              assert(added);
              id_info->kind = ID_INFO_KIND_LOCAL;
          }
  
          compile_load_id(comp, MP_QSTR___name__);
          compile_store_id(comp, MP_QSTR___module__);
          EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
          compile_store_id(comp, MP_QSTR___qualname__);
  
          check_for_doc_string(comp, pns->nodes[2]);
          compile_node(comp, pns->nodes[2]); // 2 is class body
  
          id_info_t *id = scope_find(scope, MP_QSTR___class__);
          assert(id != NULL);
          if (id->kind == ID_INFO_KIND_LOCAL) {
              EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
          } else {
              EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
          }
          EMIT(return_value);
      }
  
      EMIT(end_pass);
  
      // make sure we match all the exception levels
      assert(comp->cur_except_level == 0);
  }
  
  #if MICROPY_EMIT_INLINE_ASM
  // requires 3 passes: SCOPE, CODE_SIZE, EMIT
  STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
      comp->pass = pass;
      comp->scope_cur = scope;
      comp->next_label = 0;
  
      if (scope->kind != SCOPE_FUNCTION) {
          compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function");
          return;
      }
  
      if (comp->pass > MP_PASS_SCOPE) {
          EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
      }
  
      // get the function definition parse node
      assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
      mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
      assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
  
      //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
  
      // parameters are in pns->nodes[1]
      if (comp->pass == MP_PASS_CODE_SIZE) {
          mp_parse_node_t *pn_params;
          int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
          scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
          if (comp->compile_error != MP_OBJ_NULL) {
              goto inline_asm_error;
          }
      }
  
      // pns->nodes[2] is function return annotation
      mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
      mp_parse_node_t pn_annotation = pns->nodes[2];
      if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
          // nodes[2] can be null or a test-expr
          if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
              qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
              switch (ret_type) {
                  case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
                  case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
                  case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
                  case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
                  default: compile_syntax_error(comp, pn_annotation, "unknown type"); return;
              }
          } else {
              compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
          }
      }
  
      mp_parse_node_t pn_body = pns->nodes[3]; // body
      mp_parse_node_t *nodes;
      int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
  
      for (int i = 0; i < num; i++) {
          assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
          mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
          if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
              // no instructions
              continue;
          } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
              // not an instruction; error
          not_an_instruction:
              compile_syntax_error(comp, nodes[i], "expecting an assembler instruction");
              return;
          }
  
          // check structure of parse node
          assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
          if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
              goto not_an_instruction;
          }
          pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
          if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
              goto not_an_instruction;
          }
          if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
              goto not_an_instruction;
          }
          if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
              goto not_an_instruction;
          }
  
          // parse node looks like an instruction
          // get instruction name and args
          qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
          pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
          mp_parse_node_t *pn_arg;
          int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
  
          // emit instructions
          if (op == MP_QSTR_label) {
              if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
                  compile_syntax_error(comp, nodes[i], "'label' requires 1 argument");
                  return;
              }
              uint lab = comp_next_label(comp);
              if (pass > MP_PASS_SCOPE) {
                  if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
                      compile_syntax_error(comp, nodes[i], "label redefined");
                      return;
                  }
              }
          } else if (op == MP_QSTR_align) {
              if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                  compile_syntax_error(comp, nodes[i], "'align' requires 1 argument");
                  return;
              }
              if (pass > MP_PASS_SCOPE) {
                  mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm,
                      MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
              }
          } else if (op == MP_QSTR_data) {
              if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                  compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments");
                  return;
              }
              if (pass > MP_PASS_SCOPE) {
                  mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
                  for (uint j = 1; j < n_args; j++) {
                      if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
                          compile_syntax_error(comp, nodes[i], "'data' requires integer arguments");
                          return;
                      }
                      mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm,
                          bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
                  }
              }
          } else {
              if (pass > MP_PASS_SCOPE) {
                  EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
              }
          }
  
          if (comp->compile_error != MP_OBJ_NULL) {
              pns = pns2; // this is the parse node that had the error
              goto inline_asm_error;
          }
      }
  
      if (comp->pass > MP_PASS_SCOPE) {
          EMIT_INLINE_ASM_ARG(end_pass, type_sig);
  
          if (comp->pass == MP_PASS_EMIT) {
              void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm);
              mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
                  f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm),
                  NULL, comp->scope_cur->num_pos_args, 0, type_sig);
          }
      }
  
      if (comp->compile_error != MP_OBJ_NULL) {
          // inline assembler had an error; set line for its exception
      inline_asm_error:
          comp->compile_error_line = pns->source_line;
      }
  }
  #endif
  
  STATIC void scope_compute_things(scope_t *scope) {
      // in MicroPython we put the *x parameter after all other parameters (except **y)
      if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
          id_info_t *id_param = NULL;
          for (int i = scope->id_info_len - 1; i >= 0; i--) {
              id_info_t *id = &scope->id_info[i];
              if (id->flags & ID_FLAG_IS_STAR_PARAM) {
                  if (id_param != NULL) {
                      // swap star param with last param
                      id_info_t temp = *id_param; *id_param = *id; *id = temp;
                  }
                  break;
              } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
                  id_param = id;
              }
          }
      }
  
      // in functions, turn implicit globals into explicit globals
      // compute the index of each local
      scope->num_locals = 0;
      for (int i = 0; i < scope->id_info_len; i++) {
          id_info_t *id = &scope->id_info[i];
          if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
              // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
              continue;
          }
          if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
              id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
          }
          // params always count for 1 local, even if they are a cell
          if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
              id->local_num = scope->num_locals++;
          }
      }
  
      // compute the index of cell vars
      for (int i = 0; i < scope->id_info_len; i++) {
          id_info_t *id = &scope->id_info[i];
          // in MicroPython the cells come right after the fast locals
          // parameters are not counted here, since they remain at the start
          // of the locals, even if they are cell vars
          if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
              id->local_num = scope->num_locals;
              scope->num_locals += 1;
          }
      }
  
      // compute the index of free vars
      // make sure they are in the order of the parent scope
      if (scope->parent != NULL) {
          int num_free = 0;
          for (int i = 0; i < scope->parent->id_info_len; i++) {
              id_info_t *id = &scope->parent->id_info[i];
              if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                  for (int j = 0; j < scope->id_info_len; j++) {
                      id_info_t *id2 = &scope->id_info[j];
                      if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                          assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
                          // in MicroPython the frees come first, before the params
                          id2->local_num = num_free;
                          num_free += 1;
                      }
                  }
              }
          }
          // in MicroPython shift all other locals after the free locals
          if (num_free > 0) {
              for (int i = 0; i < scope->id_info_len; i++) {
                  id_info_t *id = &scope->id_info[i];
                  if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
                      id->local_num += num_free;
                  }
              }
              scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
              scope->num_locals += num_free;
          }
      }
  }
  
  #if !MICROPY_PERSISTENT_CODE_SAVE
  STATIC
  #endif
  mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
      // put compiler state on the stack, it's relatively small
      compiler_t comp_state = {0};
      compiler_t *comp = &comp_state;
  
      comp->source_file = source_file;
      comp->is_repl = is_repl;
      comp->break_label = INVALID_LABEL;
      comp->continue_label = INVALID_LABEL;
  
      // create the module scope
      scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);
  
      // create standard emitter; it's used at least for MP_PASS_SCOPE
      emit_t *emit_bc = emit_bc_new();
  
      // compile pass 1
      comp->emit = emit_bc;
      #if MICROPY_EMIT_NATIVE
      comp->emit_method_table = &emit_bc_method_table;
      #endif
      uint max_num_labels = 0;
      for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
          if (false) {
          #if MICROPY_EMIT_INLINE_ASM
          } else if (s->emit_options == MP_EMIT_OPT_ASM) {
              compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
          #endif
          } else {
              compile_scope(comp, s, MP_PASS_SCOPE);
          }
  
          // update maximim number of labels needed
          if (comp->next_label > max_num_labels) {
              max_num_labels = comp->next_label;
          }
      }
  
      // compute some things related to scope and identifiers
      for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
          scope_compute_things(s);
      }
  
      // set max number of labels now that it's calculated
      emit_bc_set_max_num_labels(emit_bc, max_num_labels);
  
      // compile pass 2 and 3
  #if MICROPY_EMIT_NATIVE
      emit_t *emit_native = NULL;
  #endif
      for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
          if (false) {
              // dummy
  
          #if MICROPY_EMIT_INLINE_ASM
          } else if (s->emit_options == MP_EMIT_OPT_ASM) {
              // inline assembly
              if (comp->emit_inline_asm == NULL) {
                  comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
              }
              comp->emit = NULL;
              comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table);
              compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
              #if MICROPY_EMIT_INLINE_XTENSA
              // Xtensa requires an extra pass to compute size of l32r const table
              // TODO this can be improved by calculating it during SCOPE pass
              // but that requires some other structural changes to the asm emitters
              compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
              #endif
              if (comp->compile_error == MP_OBJ_NULL) {
                  compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
              }
          #endif
  
          } else {
  
              // choose the emit type
  
              switch (s->emit_options) {
  
  #if MICROPY_EMIT_NATIVE
                  case MP_EMIT_OPT_NATIVE_PYTHON:
                  case MP_EMIT_OPT_VIPER:
                      if (emit_native == NULL) {
                          emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels);
                      }
                      comp->emit_method_table = &NATIVE_EMITTER(method_table);
                      comp->emit = emit_native;
                      EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
                      break;
  #endif // MICROPY_EMIT_NATIVE
  
                  default:
                      comp->emit = emit_bc;
                      #if MICROPY_EMIT_NATIVE
                      comp->emit_method_table = &emit_bc_method_table;
                      #endif
                      break;
              }
  
              // need a pass to compute stack size
              compile_scope(comp, s, MP_PASS_STACK_SIZE);
  
              // second last pass: compute code size
              if (comp->compile_error == MP_OBJ_NULL) {
                  compile_scope(comp, s, MP_PASS_CODE_SIZE);
              }
  
              // final pass: emit code
              if (comp->compile_error == MP_OBJ_NULL) {
                  compile_scope(comp, s, MP_PASS_EMIT);
              }
          }
      }
  
      if (comp->compile_error != MP_OBJ_NULL) {
          // if there is no line number for the error then use the line
          // number for the start of this scope
          compile_error_set_line(comp, comp->scope_cur->pn);
          // add a traceback to the exception using relevant source info
          mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
              comp->compile_error_line, comp->scope_cur->simple_name);
      }
  
      // free the emitters
  
      emit_bc_free(emit_bc);
  #if MICROPY_EMIT_NATIVE
      if (emit_native != NULL) {
          NATIVE_EMITTER(free)(emit_native);
      }
  #endif
      #if MICROPY_EMIT_INLINE_ASM
      if (comp->emit_inline_asm != NULL) {
          ASM_EMITTER(free)(comp->emit_inline_asm);
      }
      #endif
  
      // free the parse tree
      mp_parse_tree_clear(parse_tree);
  
      // free the scopes
      mp_raw_code_t *outer_raw_code = module_scope->raw_code;
      for (scope_t *s = module_scope; s;) {
          scope_t *next = s->next;
          scope_free(s);
          s = next;
      }
  
      if (comp->compile_error != MP_OBJ_NULL) {
          nlr_raise(comp->compile_error);
      } else {
          return outer_raw_code;
      }
  }
  
  mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
      mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
      // return function that executes the outer module
      return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
  }
  
  #endif // MICROPY_ENABLE_COMPILER