Blame view

build2/epsilon-master/apps/shared/curve_view.cpp 23.6 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  #include "curve_view.h"
  #include "../constant.h"
  #include <assert.h>
  #include <string.h>
  #include <cmath>
  #include <float.h>
  
  using namespace Poincare;
  
  namespace Shared {
  
  CurveView::CurveView(CurveViewRange * curveViewRange, CurveViewCursor * curveViewCursor, BannerView * bannerView,
      View * cursorView, View * okView, bool displayBanner) :
    View(),
    m_bannerView(bannerView),
    m_curveViewCursor(curveViewCursor),
    m_curveViewRange(curveViewRange),
    m_cursorView(cursorView),
    m_okView(okView),
    m_forceOkDisplay(false),
    m_mainViewSelected(false),
    m_drawnRangeVersion(0)
  {
  }
  
  void CurveView::reload() {
    uint32_t rangeVersion = m_curveViewRange->rangeChecksum();
    if (m_drawnRangeVersion != rangeVersion) {
      // FIXME: This should also be called if the *curve* changed
      m_drawnRangeVersion = rangeVersion;
      KDCoordinate bannerHeight = (m_bannerView != nullptr) ? m_bannerView->bounds().height() : 0;
      markRectAsDirty(KDRect(0, 0, bounds().width(), bounds().height() - bannerHeight));
      if (label(Axis::Horizontal, 0) != nullptr) {
        computeLabels(Axis::Horizontal);
      }
      if (label(Axis::Vertical, 0) != nullptr) {
        computeLabels(Axis::Vertical);
      }
    }
    layoutSubviews();
  }
  
  bool CurveView::isMainViewSelected() const {
    return m_mainViewSelected;
  }
  
  void CurveView::selectMainView(bool mainViewSelected) {
    if (m_mainViewSelected != mainViewSelected) {
      m_mainViewSelected = mainViewSelected;
      reload();
    }
  }
  
  void CurveView::setCurveViewRange(CurveViewRange * curveViewRange) {
    m_curveViewRange = curveViewRange;
  }
  
  /* When setting cursor, banner or ok view we first dirty the former element
   * frame (in case we set the new element to be nullptr or the new element frame
   * does not recover the former element frame) and then we dirty the new element
   * frame (most of the time it is automatically done by the layout but the frame
   * might be identical to the previous one and in that case layoutSubviews will
   * do nothing). */
  
  void CurveView::setCursorView(View * cursorView) {
    markRectAsDirty(cursorFrame());
    m_cursorView = cursorView;
    markRectAsDirty(cursorFrame());
    layoutSubviews();
  }
  
  void CurveView::setBannerView(View * bannerView) {
    markRectAsDirty(bannerFrame());
    m_bannerView = bannerView;
    layoutSubviews();
  }
  
  void CurveView::setOkView(View * okView) {
    markRectAsDirty(okFrame());
    m_okView = okView;
    layoutSubviews();
  }
  
  float CurveView::resolution() const {
    return bounds().width()*samplingRatio();
  }
  
  float CurveView::samplingRatio() const {
    return 1.1f;
  }
  
  float CurveView::min(Axis axis) const {
    assert(axis == Axis::Horizontal || axis == Axis::Vertical);
    return (axis == Axis::Horizontal ? m_curveViewRange->xMin(): m_curveViewRange->yMin());
  }
  
  float CurveView::max(Axis axis) const {
    assert(axis == Axis::Horizontal || axis == Axis::Vertical);
    return (axis == Axis::Horizontal ? m_curveViewRange->xMax() : m_curveViewRange->yMax());
  }
  
  float CurveView::gridUnit(Axis axis) const {
    return (axis == Axis::Horizontal ? m_curveViewRange->xGridUnit() : m_curveViewRange->yGridUnit());
  }
  
  KDCoordinate CurveView::pixelLength(Axis axis) const {
    assert(axis == Axis::Horizontal || axis == Axis::Vertical);
    return (axis == Axis::Horizontal ? m_frame.width() : m_frame.height());
  }
  
  float CurveView::pixelToFloat(Axis axis, KDCoordinate p) const {
    KDCoordinate pixels = axis == Axis::Horizontal ? p : pixelLength(axis)-p;
    return min(axis) + pixels*((max(axis)-min(axis))/pixelLength(axis));
  }
  
  float CurveView::floatToPixel(Axis axis, float f) const {
    float fraction = (f-min(axis))/(max(axis)-min(axis));
    fraction = axis == Axis::Horizontal ? fraction : 1.0f - fraction;
    /* Fraction is a float that translates the relative position of f on the axis.
     * When fraction is between 0 and 1, f is visible. Otherwise, f is out of the
     * visible window. We need to clip fraction to avoid big float issue (often
     * due to float to int transformation). However, we cannot clip fraction
     * between 0 and 1 because drawing a sized stamp on the extern boarder of the
     * window should still be visible. We thus arbitrarily clip fraction between
     * -10 and 10. */
    fraction = fraction < -10.0f ? -10.0f : fraction;
    fraction = fraction > 10.0f ? 10.0f : fraction;
    return pixelLength(axis)*fraction;
  }
  
  void CurveView::computeLabels(Axis axis) {
    char buffer[PrintFloat::bufferSizeForFloatsWithPrecision(Constant::ShortNumberOfSignificantDigits)];
    float step = gridUnit(axis);
    for (int index = 0; index < numberOfLabels(axis); index++) {
      float labelValue = 2.0f*step*(std::ceil(min(axis)/(2.0f*step)))+index*2.0f*step;
      if (labelValue < step && labelValue > -step) {
        labelValue = 0.0f;
      }
      PrintFloat::convertFloatToText<float>(labelValue, buffer,
        PrintFloat::bufferSizeForFloatsWithPrecision(Constant::ShortNumberOfSignificantDigits),
        Constant::ShortNumberOfSignificantDigits, PrintFloat::Mode::Decimal);
      //TODO: check for size of label?
      strlcpy(label(axis, index), buffer, strlen(buffer)+1);
    }
  }
  
  void CurveView::drawLabels(KDContext * ctx, KDRect rect, Axis axis, bool shiftOrigin, bool graduationOnly, bool fixCoordinate, KDCoordinate fixedCoordinate) const {
    float step = gridUnit(axis);
    float start = 2.0f*step*(std::ceil(min(axis)/(2.0f*step)));
    float end = max(axis);
    float verticalCoordinate = fixCoordinate ? fixedCoordinate : std::round(floatToPixel(Axis::Vertical, 0.0f));
    float horizontalCoordinate = fixCoordinate ? fixedCoordinate : std::round(floatToPixel(Axis::Horizontal, 0.0f));
    int i = 0;
    for (float x = start; x < end; x += 2.0f*step) {
      /* When |start| >> step, start + step = start. In that case, quit the
       * infinite loop. */
      if (x == x-step || x == x+step) {
        return;
      }
      KDRect graduation(std::round(floatToPixel(Axis::Horizontal, x)), verticalCoordinate -(k_labelGraduationLength-2)/2, 1, k_labelGraduationLength);
      if (axis == Axis::Vertical) {
        graduation = KDRect(horizontalCoordinate-(k_labelGraduationLength-2)/2, std::round(floatToPixel(Axis::Vertical, x)), k_labelGraduationLength, 1);
      }
      if (!graduationOnly) {
        KDSize textSize = KDText::stringSize(label(axis, i), KDText::FontSize::Small);
        KDPoint origin(std::round(floatToPixel(Axis::Horizontal, x)) - textSize.width()/2, verticalCoordinate + k_labelMargin);
        if (axis == Axis::Vertical) {
          origin = KDPoint(horizontalCoordinate + k_labelMargin, std::round(floatToPixel(Axis::Vertical, x)) - textSize.height()/2);
        }
        if (-step < x && x < step && shiftOrigin) {
          origin = KDPoint(horizontalCoordinate + k_labelMargin, verticalCoordinate + k_labelMargin);
        }
        if (rect.intersects(KDRect(origin, KDText::stringSize(label(axis, i), KDText::FontSize::Small)))) {
          ctx->blendString(label(axis, i), origin, KDText::FontSize::Small, KDColorBlack);
        }
      }
      ctx->fillRect(graduation, KDColorBlack);
      i++;
    }
  }
  
  void CurveView::drawLine(KDContext * ctx, KDRect rect, Axis axis, float coordinate, KDColor color, KDCoordinate thickness) const {
    KDRect lineRect = KDRectZero;
    switch(axis) {
      case Axis::Horizontal:
        lineRect = KDRect(
            rect.x(), std::round(floatToPixel(Axis::Vertical, coordinate)),
            rect.width(), thickness
            );
        break;
      case Axis::Vertical:
        lineRect = KDRect(
            std::round(floatToPixel(Axis::Horizontal, coordinate)), rect.y(),
            thickness, rect.height()
        );
        break;
    }
    if (rect.intersects(lineRect)) {
      ctx->fillRect(lineRect, color);
    }
  }
  
  void CurveView::drawSegment(KDContext * ctx, KDRect rect, Axis axis, float coordinate, float lowerBound, float upperBound, KDColor color, KDCoordinate thickness) const {
    KDRect lineRect = KDRectZero;
    switch(axis) {
      case Axis::Horizontal:
        lineRect = KDRect(
            std::round(floatToPixel(Axis::Horizontal, lowerBound)), std::round(floatToPixel(Axis::Vertical, coordinate)),
            std::round(floatToPixel(Axis::Horizontal, upperBound) - floatToPixel(Axis::Horizontal, lowerBound)), thickness
            );
        break;
      case Axis::Vertical:
        lineRect = KDRect(
            std::round(floatToPixel(Axis::Horizontal, coordinate)), std::round(floatToPixel(Axis::Vertical, upperBound)),
            thickness,  std::round(floatToPixel(Axis::Vertical, lowerBound) - floatToPixel(Axis::Vertical, upperBound))
        );
        break;
    }
    if (rect.intersects(lineRect)) {
      ctx->fillRect(lineRect, color);
    }
  }
  
  constexpr KDCoordinate dotDiameter = 5;
  const uint8_t dotMask[dotDiameter][dotDiameter] = {
    {0xE1, 0x45, 0x0C, 0x45, 0xE1},
    {0x45, 0x00, 0x00, 0x00, 0x45},
    {0x00, 0x00, 0x00, 0x00, 0x00},
    {0x45, 0x00, 0x00, 0x00, 0x45},
    {0xE1, 0x45, 0x0C, 0x45, 0xE1},
  };
  
  constexpr KDCoordinate oversizeDotDiameter = 7;
  const uint8_t oversizeDotMask[oversizeDotDiameter][oversizeDotDiameter] = {
    {0xE1, 0x45, 0x0C, 0x00, 0x0C, 0x45, 0xE1},
    {0x45, 0x0C, 0x00, 0x00, 0x00, 0x0C, 0x45},
    {0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C},
    {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
    {0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C},
    {0x45, 0x0C, 0x00, 0x00, 0x00, 0x0C, 0x45},
    {0xE1, 0x45, 0x0C, 0x00, 0x0C, 0x45, 0xE1},
  
  };
  
  KDColor s_dotWorkingBuffer[dotDiameter*dotDiameter];
  KDColor s_oversizeDotWorkingBuffer[oversizeDotDiameter*oversizeDotDiameter];
  
  void CurveView::drawDot(KDContext * ctx, KDRect rect, float x, float y, KDColor color, bool oversize) const {
    KDCoordinate px = std::round(floatToPixel(Axis::Horizontal, x));
    KDCoordinate py = std::round(floatToPixel(Axis::Vertical, y));
    if ((px + dotDiameter < rect.left() - k_externRectMargin || px - dotDiameter > rect.right() + k_externRectMargin) ||
        (py + dotDiameter < rect.top() - k_externRectMargin || py - dotDiameter > rect.bottom() + k_externRectMargin)) {
      return;
    }
    KDRect dotRect = KDRect(px - dotDiameter/2, py-dotDiameter/2, dotDiameter, dotDiameter);
    ctx->blendRectWithMask(dotRect, color, (const uint8_t *)dotMask, s_dotWorkingBuffer);
    if (oversize) {
      KDRect oversizeDotRect = KDRect(px - oversizeDotDiameter/2, py-oversizeDotDiameter/2, oversizeDotDiameter, oversizeDotDiameter);
      ctx->blendRectWithMask(oversizeDotRect, color, (const uint8_t *)oversizeDotMask, s_oversizeDotWorkingBuffer);
    }
  }
  
  void CurveView::drawGridLines(KDContext * ctx, KDRect rect, Axis axis, float step, KDColor color) const {
    float rectMin = pixelToFloat(Axis::Horizontal, rect.left());
    float rectMax = pixelToFloat(Axis::Horizontal, rect.right());
    if (axis == Axis::Vertical) {
      rectMax = pixelToFloat(Axis::Vertical, rect.top());
      rectMin = pixelToFloat(Axis::Vertical, rect.bottom());
    }
    float start = step*((int)(min(axis)/step));
    Axis otherAxis = (axis == Axis::Horizontal) ? Axis::Vertical : Axis::Horizontal;
    for (float x =start; x < max(axis); x += step) {
      /* When |start| >> step, start + step = start. In that case, quit the
       * infinite loop. */
      if (x == x-step || x == x+step) {
        return;
      }
      if (rectMin <= x && x <= rectMax) {
        drawLine(ctx, rect, otherAxis, x, color);
      }
    }
  }
  
  void CurveView::drawGrid(KDContext * ctx, KDRect rect) const {
    drawGridLines(ctx, rect, Axis::Horizontal, m_curveViewRange->xGridUnit(), Palette::GreyWhite);
    drawGridLines(ctx, rect, Axis::Vertical, m_curveViewRange->yGridUnit(), Palette::GreyWhite);
  }
  
  void CurveView::drawAxes(KDContext * ctx, KDRect rect, Axis axis) const {
    drawLine(ctx, rect, axis, 0.0f, KDColorBlack, 1);
  }
  
  #define LINE_THICKNESS 2
  
  #if LINE_THICKNESS == 1
  
  constexpr KDCoordinate circleDiameter = 1;
  constexpr KDCoordinate stampSize = circleDiameter+1;
  const uint8_t stampMask[stampSize+1][stampSize+1] = {
    {0xFF, 0xE1, 0xFF},
    {0xE1, 0x00, 0xE1},
    {0xFF, 0xE1, 0xFF},
  };
  
  #elif LINE_THICKNESS == 2
  
  constexpr KDCoordinate circleDiameter = 2;
  constexpr KDCoordinate stampSize = circleDiameter+1;
  const uint8_t stampMask[stampSize+1][stampSize+1] = {
    {0xFF, 0xE6, 0xE6, 0xFF},
    {0xE6, 0x33, 0x33, 0xE6},
    {0xE6, 0x33, 0x33, 0xE6},
    {0xFF, 0xE6, 0xE6, 0xFF},
  };
  
  #elif LINE_THICKNESS == 3
  
  constexpr KDCoordinate circleDiameter = 3;
  constexpr KDCoordinate stampSize = circleDiameter+1;
  const uint8_t stampMask[stampSize+1][stampSize+1] = {
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
    {0xFF, 0x7A, 0x0C, 0x7A, 0xFF},
    {0xFF, 0x0C, 0x00, 0x0C, 0xFF},
    {0xFF, 0x7A, 0x0C, 0x7A, 0xFF},
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
  };
  
  #elif LINE_THICKNESS == 5
  
  constexpr KDCoordinate circleDiameter = 5;
  constexpr KDCoordinate stampSize = circleDiameter+1;
  const uint8_t stampMask[stampSize+1][stampSize+1] = {
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
    {0xFF, 0xE1, 0x45, 0x0C, 0x45, 0xE1, 0xFF},
    {0xFF, 0x45, 0x00, 0x00, 0x00, 0x45, 0xFF},
    {0xFF, 0x0C, 0x00, 0x00, 0x00, 0x0C, 0xFF},
    {0xFF, 0x45, 0x00, 0x00, 0x00, 0x45, 0xFF},
    {0xFF, 0xE1, 0x45, 0x0C, 0x45, 0xE1, 0xFF},
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  };
  
  #endif
  
  constexpr static int k_maxNumberOfIterations = 10;
  
  void CurveView::drawCurve(KDContext * ctx, KDRect rect, EvaluateModelWithParameter evaluation, void * model, void * context, KDColor color, bool colorUnderCurve, float colorLowerBound, float colorUpperBound, bool continuously) const {
    float xMin = min(Axis::Horizontal);
    float xMax = max(Axis::Horizontal);
    float xStep = (xMax-xMin)/resolution();
    float rectMin = pixelToFloat(Axis::Horizontal, rect.left() - k_externRectMargin);
    float rectMax = pixelToFloat(Axis::Horizontal, rect.right() + k_externRectMargin);
  
    float pixelColorLowerBound = std::round(floatToPixel(Axis::Horizontal, colorLowerBound));
    float pixelColorUpperBound = std::round(floatToPixel(Axis::Horizontal, colorUpperBound));
  
    for (float x = rectMin; x < rectMax; x += xStep) {
      /* When |rectMin| >> xStep, rectMin + xStep = rectMin. In that case, quit
       * the infinite loop. */
      if (x == x-xStep || x == x+xStep) {
        return;
      }
      float y = evaluation(x, model, context);
      if (std::isnan(y)|| std::isinf(y)) {
        continue;
      }
      float pxf = floatToPixel(Axis::Horizontal, x);
      float pyf = floatToPixel(Axis::Vertical, y);
      if (colorUnderCurve && pxf > pixelColorLowerBound && pxf < pixelColorUpperBound) {
        KDRect colorRect((int)pxf, std::round(pyf), 1, std::round(floatToPixel(Axis::Vertical, 0.0f)) - std::round(pyf));
        if (floatToPixel(Axis::Vertical, 0.0f) < std::round(pyf)) {
          colorRect = KDRect((int)pxf, std::round(floatToPixel(Axis::Vertical, 0.0f)), 1, std::round(pyf) - std::round(floatToPixel(Axis::Vertical, 0.0f)));
        }
        ctx->fillRect(colorRect, color);
      }
      stampAtLocation(ctx, rect, pxf, pyf, color);
      if (x <= rectMin || std::isnan(evaluation(x-xStep, model, context))) {
        continue;
      }
      if (continuously) {
        float puf = floatToPixel(Axis::Horizontal, x - xStep);
        float pvf = floatToPixel(Axis::Vertical, evaluation(x-xStep, model, context));
        straightJoinDots(ctx, rect, puf, pvf, pxf, pyf, color);
      } else {
        jointDots(ctx, rect, evaluation, model, context, x - xStep, evaluation(x-xStep, model, context), x, y, color, k_maxNumberOfIterations);
      }
    }
  }
  
  void CurveView::drawHistogram(KDContext * ctx, KDRect rect, EvaluateModelWithParameter evaluation, void * model, void * context, float firstBarAbscissa, float barWidth,
      bool fillBar, KDColor defaultColor, KDColor highlightColor,  float highlightLowerBound, float highlightUpperBound) const {
    float rectMin = pixelToFloat(Axis::Horizontal, rect.left());
    float rectMinBinNumber = std::floor((rectMin - firstBarAbscissa)/barWidth);
    float rectMinLowerBound = firstBarAbscissa + rectMinBinNumber*barWidth;
    float rectMax = pixelToFloat(Axis::Horizontal, rect.right());
    float rectMaxBinNumber = std::floor((rectMax - firstBarAbscissa)/barWidth);
    float rectMaxUpperBound = firstBarAbscissa + (rectMaxBinNumber+1)*barWidth + barWidth;
    float pHighlightLowerBound = floatToPixel(Axis::Horizontal, highlightLowerBound);
    float pHighlightUpperBound = floatToPixel(Axis::Horizontal, highlightUpperBound);
    float step = barWidth;
    if ((rectMaxUpperBound-rectMinLowerBound)/step > resolution()) {
      step = (rectMaxUpperBound-rectMinLowerBound)/resolution();
    }
    for (float x = rectMinLowerBound; x < rectMaxUpperBound; x += step) {
      /* When |rectMinLowerBound| >> step, rectMinLowerBound + step = rectMinLowerBound.
       * In that case, quit the infinite loop. */
      if (x == x-step || x == x+step) {
        return;
      }
      float centerX = fillBar ? x+barWidth/2.0f : x;
      float y = evaluation(centerX, model, context);
      if (std::isnan(y)) {
        continue;
      }
      KDCoordinate pxf = std::round(floatToPixel(Axis::Horizontal, x));
      KDCoordinate pyf = std::round(floatToPixel(Axis::Vertical, y));
      KDCoordinate pixelBarWidth = fillBar ? std::round(floatToPixel(Axis::Horizontal, x+barWidth)) - std::round(floatToPixel(Axis::Horizontal, x))-1 : 2;
      KDRect binRect(pxf, pyf, pixelBarWidth, std::round(floatToPixel(Axis::Vertical, 0.0f)) - pyf);
      if (floatToPixel(Axis::Vertical, 0.0f) < pyf) {
        binRect = KDRect(pxf, std::round(floatToPixel(Axis::Vertical, 0.0f)), pixelBarWidth+1, pyf - std::round(floatToPixel(Axis::Vertical, 0.0f)));
      }
      KDColor binColor = defaultColor;
      bool shouldColorBin = fillBar ? centerX >= highlightLowerBound && centerX <= highlightUpperBound : pxf >= floorf(pHighlightLowerBound) && pxf <= floorf(pHighlightUpperBound);
      if (shouldColorBin) {
        binColor = highlightColor;
      }
      ctx->fillRect(binRect, binColor);
    }
  }
  
  int CurveView::numberOfLabels(Axis axis) const {
    Axis otherAxis = axis == Axis::Horizontal ? Axis::Vertical : Axis::Horizontal;
    if (min(otherAxis) > 0.0f || max(otherAxis) < 0.0f) {
      return 0;
    }
    return std::ceil((max(axis) - min(axis))/(2*gridUnit(axis)));
  }
  
  void CurveView::jointDots(KDContext * ctx, KDRect rect, EvaluateModelWithParameter evaluation, void * model, void * context, float x, float y, float u, float v, KDColor color, int maxNumberOfRecursion) const {
    float pyf = floatToPixel(Axis::Vertical, y);
    float pvf = floatToPixel(Axis::Vertical, v);
    if (std::isnan(pyf) || std::isnan(pvf)) {
      return;
    }
    // No need to draw if both dots are outside visible area
    if ((pyf < -stampSize && pvf < -stampSize) || (pyf > pixelLength(Axis::Vertical)+stampSize && pvf > pixelLength(Axis::Vertical)+stampSize)) {
      return;
    }
    // If one of the dot is infinite, we cap it with a dot outside area
    if (std::isinf(pyf)) {
      pyf = pyf > 0 ? pixelLength(Axis::Vertical)+stampSize : -stampSize;
    }
    if (std::isinf(pvf)) {
      pvf = pvf > 0 ? pixelLength(Axis::Vertical)+stampSize : -stampSize;
    }
    if (pyf - (float)circleDiameter/2.0f < pvf && pvf < pyf + (float)circleDiameter/2.0f) {
      // the dots are already joined
      return;
    }
    // C is the dot whose abscissa is between x and u
    float cx = (x + u)/2.0f;
    float cy = evaluation(cx, model, context);
    if ((y <= cy && cy <= v) || (v <= cy && cy <= y)) {
      /* As the middle dot is vertically between the two dots, we assume that we
       * can draw a 'straight' line between the two */
      float pxf = floatToPixel(Axis::Horizontal, x);
      float puf = floatToPixel(Axis::Horizontal, u);
      if (std::isnan(pxf) || std::isnan(puf)) {
        return;
      }
      straightJoinDots(ctx, rect, pxf, pyf, puf, pvf, color);
      return;
    }
    float pcxf = floatToPixel(Axis::Horizontal, cx);
    float pcyf = floatToPixel(Axis::Vertical, cy);
    if (maxNumberOfRecursion > 0) {
      stampAtLocation(ctx, rect, pcxf, pcyf, color);
      jointDots(ctx, rect, evaluation, model, context, x, y, cx, cy, color, maxNumberOfRecursion-1);
      jointDots(ctx, rect, evaluation, model, context, cx, cy, u, v, color, maxNumberOfRecursion-1);
    }
  }
  
  void CurveView::straightJoinDots(KDContext * ctx, KDRect rect, float pxf, float pyf, float puf, float pvf, KDColor color) const {
    if (pyf <= pvf) {
      for (float pnf = pyf; pnf<pvf; pnf+= 1.0f) {
        float pmf = pxf + (pnf - pyf)*(puf - pxf)/(pvf - pyf);
        stampAtLocation(ctx, rect, pmf, pnf, color);
      }
      return;
    }
    straightJoinDots(ctx, rect, puf, pvf, pxf, pyf, color);
  }
  
  void CurveView::stampAtLocation(KDContext * ctx, KDRect rect, float pxf, float pyf, KDColor color) const {
    // We avoid drawing when no part of the stamp is visible
    if (pyf < -stampSize || pyf > pixelLength(Axis::Vertical)+stampSize) {
      return;
    }
    KDCoordinate px = pxf;
    KDCoordinate py = pyf;
    KDRect stampRect(px-(circleDiameter-2)/2, py-(circleDiameter-2)/2, stampSize, stampSize);
    if (!rect.intersects(stampRect)) {
      return;
    }
    uint8_t shiftedMask[stampSize][stampSize];
    KDColor workingBuffer[stampSize*stampSize];
    float dx = pxf - std::floor(pxf);
    float dy = pyf - std::floor(pyf);
    /* TODO: this could be optimized by precomputing 10 or 100 shifted masks. The
     * dx and dy would be rounded to one tenth or one hundredth to choose the
     * right shifted mask. */
    for (int i=0; i<stampSize; i++) {
      for (int j=0; j<stampSize; j++) {
        shiftedMask[i][j] = dx * (stampMask[i][j]*dy+stampMask[i+1][j]*(1.0f-dy))
          + (1.0f-dx) * (stampMask[i][j+1]*dy + stampMask[i+1][j+1]*(1.0f-dy));
      }
    }
    ctx->blendRectWithMask(stampRect, color, (const uint8_t *)shiftedMask, workingBuffer);
  }
  
  void CurveView::layoutSubviews() {
    if (m_curveViewCursor != nullptr && m_cursorView != nullptr) {
      m_cursorView->setFrame(cursorFrame());
    }
    if (m_bannerView != nullptr) {
      m_bannerView->setFrame(bannerFrame());
    }
    if (m_okView != nullptr) {
      m_okView->setFrame(okFrame());
    }
  }
  
  KDRect CurveView::cursorFrame() {
    KDRect cursorFrame = KDRectZero;
    if (m_cursorView && m_mainViewSelected && !std::isnan(m_curveViewCursor->x()) && !std::isnan(m_curveViewCursor->y())) {
      KDSize cursorSize = m_cursorView->minimalSizeForOptimalDisplay();
      KDCoordinate xCursorPixelPosition = std::round(floatToPixel(Axis::Horizontal, m_curveViewCursor->x()));
      KDCoordinate yCursorPixelPosition = std::round(floatToPixel(Axis::Vertical, m_curveViewCursor->y()));
      cursorFrame = KDRect(xCursorPixelPosition - (cursorSize.width()-1)/2, yCursorPixelPosition - (cursorSize.height()-1)/2, cursorSize.width(), cursorSize.height());
      if (cursorSize.height() == 0) {
        KDCoordinate bannerHeight = (m_bannerView != nullptr) ? m_bannerView->minimalSizeForOptimalDisplay().height() : 0;
        cursorFrame = KDRect(xCursorPixelPosition - (cursorSize.width()-1)/2, 0, cursorSize.width(),bounds().height()-bannerHeight);
      }
    }
    return cursorFrame;
  }
  
  KDRect CurveView::bannerFrame() {
    KDRect bannerFrame = KDRectZero;
    if (m_bannerView && m_mainViewSelected) {
      KDCoordinate bannerHeight = m_bannerView->minimalSizeForOptimalDisplay().height();
      bannerFrame = KDRect(0, bounds().height()- bannerHeight, bounds().width(), bannerHeight);
    }
    return bannerFrame;
  }
  
  KDRect CurveView::okFrame() {
    KDRect okFrame = KDRectZero;
    if (m_okView && (m_mainViewSelected || m_forceOkDisplay)) {
      KDCoordinate bannerHeight = 0;
      if (m_bannerView != nullptr) {
        bannerHeight = m_bannerView->minimalSizeForOptimalDisplay().height();
      }
      KDSize okSize = m_okView->minimalSizeForOptimalDisplay();
      okFrame = KDRect(bounds().width()- okSize.width()-k_okHorizontalMargin, bounds().height()- bannerHeight-okSize.height()-k_okVerticalMargin, okSize);
    }
    return okFrame;
  }
  
  int CurveView::numberOfSubviews() const {
    return (m_bannerView != nullptr) + (m_cursorView != nullptr) + (m_okView != nullptr);
  };
  
  View * CurveView::subviewAtIndex(int index) {
    assert(index >= 0 && index < 3);
    /* If all subviews exist, we want Ok view to be the first child to avoid
     * redrawing it because it falls in the union of dirty rectangles linked to
     * the banner view and curve view */
    if (index == 0) {
      if (m_okView != nullptr) {
        return m_okView;
      } else {
        if (m_bannerView != nullptr) {
          return m_bannerView;
        }
      }
    }
    if (index == 1 && m_bannerView != nullptr && m_okView != nullptr) {
      return m_bannerView;
    }
    return m_cursorView;
  }
  
  }