Blame view

build1/epsilon-master/poincare/src/opposite.cpp 2.96 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  #include <poincare/opposite.h>
  #include "layout/char_layout.h"
  #include "layout/horizontal_layout.h"
  #include <cmath>
  #include <poincare/layout_engine.h>
  #include <poincare/multiplication.h>
  #include <poincare/rational.h>
  #include <poincare/simplification_engine.h>
  extern "C" {
  #include <assert.h>
  #include <stdlib.h>
  }
  
  namespace Poincare {
  
  Expression::Type Opposite::type() const {
    return Type::Opposite;
  }
  
  Expression * Opposite::clone() const {
    Opposite * o = new Opposite(m_operands, true);
    return o;
  }
  
  int Opposite::polynomialDegree(char symbolName) const {
    return operand(0)->polynomialDegree(symbolName);
  }
  
  Expression::Sign Opposite::sign() const {
    if (operand(0)->sign() == Sign::Positive) {
      return Sign::Negative;
    }
    if (operand(0)->sign() == Sign::Negative) {
      return Sign::Positive;
    }
    return Sign::Unknown;
  }
  
  /* Layout */
  
  bool Opposite::needParenthesisWithParent(const Expression * e) const {
    Type types[] = {Type::Addition, Type::Subtraction, Type::Opposite, Type::Multiplication, Type::Division, Type::Power, Type::Factorial};
    return e->isOfType(types, 7);
  }
  
  template<typename T>
  std::complex<T> Opposite::compute(const std::complex<T> c, AngleUnit angleUnit) {
    return -c;
  }
  
  Expression * Opposite::shallowReduce(Context& context, AngleUnit angleUnit) {
    Expression * e = Expression::shallowReduce(context, angleUnit);
    if (e != this) {
      return e;
    }
    const Expression * op = operand(0);
  #if MATRIX_EXACT_REDUCING
    if (op->type() == Type::Matrix) {
      return SimplificationEngine::map(this, context, angleUnit);
    }
  #endif
    detachOperand(op);
    Multiplication * m = new Multiplication(new Rational(-1), op, false);
    replaceWith(m, true);
    return m->shallowReduce(context, angleUnit);
  }
  
  ExpressionLayout * Opposite::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
    HorizontalLayout * result = new HorizontalLayout(new CharLayout('-'), false);
    if (operand(0)->type() == Type::Opposite) {
      result->addOrMergeChildAtIndex(LayoutEngine::createParenthesedLayout(operand(0)->createLayout(floatDisplayMode, numberOfSignificantDigits), false), 1, false);
    } else {
      result->addOrMergeChildAtIndex(operand(0)->createLayout(floatDisplayMode, numberOfSignificantDigits), 1, false);
    }
    return result;
  }
  
  int Opposite::writeTextInBuffer(char * buffer, int bufferSize, PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
    if (bufferSize == 0) {
      return -1;
    }
    buffer[bufferSize-1] = 0;
    int numberOfChar = 0;
    if (bufferSize == 1) { return 0; }
    buffer[numberOfChar++] = '-';
    numberOfChar += operand(0)->writeTextInBuffer(buffer+numberOfChar, bufferSize-numberOfChar, floatDisplayMode, numberOfSignificantDigits);
    buffer[numberOfChar] = 0;
    return numberOfChar;
  }
  
  }
  
  template std::complex<float> Poincare::Opposite::compute<float>(const std::complex<float>, AngleUnit angleUnit);
  template std::complex<double> Poincare::Opposite::compute<double>(const std::complex<double>, AngleUnit angleUnit);