Blame view

Modif/epsilon-master/poincare/src/prediction_interval.cpp 3.42 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  #include <poincare/prediction_interval.h>
  #include <poincare/matrix.h>
  #include <poincare/addition.h>
  #include <poincare/multiplication.h>
  #include <poincare/power.h>
  #include <poincare/undefined.h>
  #include <poincare/division.h>
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Expression::Type PredictionInterval::type() const {
    return Type::PredictionInterval;
  }
  
  Expression * PredictionInterval::clone() const {
    PredictionInterval * a = new PredictionInterval(m_operands, true);
    return a;
  }
  
  int PredictionInterval::polynomialDegree(char symbolName) const {
    return -1;
  }
  
  Expression * PredictionInterval::shallowReduce(Context& context, AngleUnit angleUnit) {
    Expression * e = Expression::shallowReduce(context, angleUnit);
    if (e != this) {
      return e;
    }
    Expression * op0 = editableOperand(0);
    Expression * op1 = editableOperand(1);
  #if MATRIX_EXACT_REDUCING
    if (op0->type() == Type::Matrix || op1->type() == Type::Matrix) {
      return replaceWith(new Undefined(), true);
    }
  #endif
    if (op0->type() == Type::Rational) {
      Rational * r0 = static_cast<Rational *>(op0);
      if (r0->numerator().isNegative() || Integer::NaturalOrder(r0->numerator(), r0->denominator()) > 0) {
        return replaceWith(new Undefined(), true);
      }
    }
    if (op1->type() == Type::Rational) {
      Rational * r1 = static_cast<Rational *>(op1);
      if (!r1->denominator().isOne() || r1->numerator().isNegative()) {
        return replaceWith(new Undefined(), true);
      }
    }
    if (op0->type() != Type::Rational || op1->type() != Type::Rational) {
      return this;
    }
    Rational * r0 = static_cast<Rational *>(op0);
    Rational * r1 = static_cast<Rational *>(op1);
    if (!r1->denominator().isOne() || r1->numerator().isNegative() || r0->numerator().isNegative() || Integer::NaturalOrder(r0->numerator(), r0->denominator()) > 0) {
      return replaceWith(new Undefined(), true);
    }
    detachOperand(r0);
    detachOperand(r1);
    /* [r0-1.96*sqrt(r0*(1-r0)/r1), r0+1.96*sqrt(r0*(1-r0)/r1)]*/
    // Compute numerator = r0*(1-r0)
    Rational * numerator = new Rational(Rational::Multiplication(*r0, Rational(Integer::Subtraction(r0->denominator(), r0->numerator()), r0->denominator())));
    // Compute sqr = sqrt(r0*(1-r0)/r1)
    Expression * sqr = new Power(new Division(numerator, r1, false), new Rational(1, 2), false);
    Expression * m = new Multiplication(new Rational(196, 100), sqr, false);
    const Expression * newOperands[2] = {new Addition(r0, new Multiplication(new Rational(-1), m, false), false), new Addition(r0, m, true),};
    Expression * matrix = replaceWith(new Matrix(newOperands, 1, 2, false), true);
    return matrix->deepReduce(context, angleUnit);
  }
  
  template<typename T>
  Evaluation<T> * PredictionInterval::templatedApproximate(Context& context, AngleUnit angleUnit) const {
    Evaluation<T> * pInput = operand(0)->privateApproximate(T(), context, angleUnit);
    Evaluation<T> * nInput = operand(1)->privateApproximate(T(), context, angleUnit);
    T p = static_cast<Complex<T> *>(pInput)->toScalar();
    T n = static_cast<Complex<T> *>(nInput)->toScalar();
    delete pInput;
    delete nInput;
    if (std::isnan(p) || std::isnan(n) || n != (int)n || n < 0 || p < 0 || p > 1) {
      return new Complex<T>(Complex<T>::Undefined());
    }
    std::complex<T> operands[2];
    operands[0] = std::complex<T>(p - 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n));
    operands[1] = std::complex<T>(p + 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n));
    return new MatrixComplex<T>(operands, 1, 2);
  }
  
  }