6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
#include <poincare/power.h>
#include <poincare/addition.h>
#include <poincare/arithmetic.h>
#include <poincare/binomial_coefficient.h>
#include <poincare/cosine.h>
#include <poincare/division.h>
#include <poincare/matrix.h>
#include <poincare/matrix_inverse.h>
#include <poincare/nth_root.h>
#include <poincare/opposite.h>
#include <poincare/parenthesis.h>
#include <poincare/simplification_root.h>
#include <poincare/sine.h>
#include <poincare/square_root.h>
#include <poincare/symbol.h>
#include <poincare/subtraction.h>
#include <poincare/undefined.h>
#include "layout/horizontal_layout.h"
#include "layout/vertical_offset_layout.h"
#include <cmath>
#include <math.h>
#include <ion.h>
extern "C" {
#include <assert.h>
#include <stdlib.h>
}
namespace Poincare {
Expression::Type Power::type() const {
return Type::Power;
}
Expression * Power::clone() const {
return new Power(m_operands, true);
}
Expression::Sign Power::sign() const {
if (shouldStopProcessing()) {
return Sign::Unknown;
}
if (operand(0)->sign() == Sign::Positive && operand(1)->sign() != Sign::Unknown) {
return Sign::Positive;
}
if (operand(0)->sign() == Sign::Negative && operand(1)->type() == Type::Rational) {
const Rational * r = static_cast<const Rational *>(operand(1));
if (r->denominator().isOne()) {
if (Integer::Division(r->numerator(), Integer(2)).remainder.isZero()) {
return Sign::Positive;
} else {
return Sign::Negative;
}
}
}
return Sign::Unknown;
}
int Power::polynomialDegree(char symbolName) const {
int deg = Expression::polynomialDegree(symbolName);
if (deg == 0) {
return deg;
}
int op0Deg = operand(0)->polynomialDegree(symbolName);
if (op0Deg < 0) {
return -1;
}
if (operand(1)->type() == Type::Rational) {
const Rational * r = static_cast<const Rational *>(operand(1));
if (!r->denominator().isOne() || r->sign() == Sign::Negative) {
return -1;
}
if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) {
return -1;
}
op0Deg *= r->numerator().extractedInt();
return op0Deg;
}
return -1;
}
int Power::privateGetPolynomialCoefficients(char symbolName, Expression * coefficients[]) const {
int deg = polynomialDegree(symbolName);
if (deg <= 0) {
return Expression::privateGetPolynomialCoefficients(symbolName, coefficients);
}
/* Here we only consider the case x^4 as privateGetPolynomialCoefficients is
* supposed to be called after reducing the expression. */
if (operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == symbolName && operand(1)->type() == Type::Rational) {
const Rational * r = static_cast<const Rational *>(operand(1));
if (!r->denominator().isOne() || r->sign() == Sign::Negative) {
return -1;
}
if (Integer::NaturalOrder(r->numerator(), Integer(Integer::k_maxExtractableInteger)) > 0) {
return -1;
}
int n = r->numerator().extractedInt();
if (n <= k_maxPolynomialDegree) {
for (int i = 0; i < n; i++) {
coefficients[i] = new Rational(0);
}
coefficients[n] = new Rational(1);
return n;
}
}
return -1;
}
Expression * Power::setSign(Sign s, Context & context, AngleUnit angleUnit) {
assert(s == Sign::Positive);
assert(operand(0)->sign() == Sign::Negative);
editableOperand(0)->setSign(Sign::Positive, context, angleUnit);
return this;
}
template<typename T>
std::complex<T> Power::compute(const std::complex<T> c, const std::complex<T> d) {
/* Openbsd trigonometric functions are numerical implementation and thus are
* approximative.
* The error epsilon is ~1E-7 on float and ~1E-15 on double. In order to
* avoid weird results as e(i*pi) = -1+6E-17*i, we compute the argument of
* the result of c^d and if arg ~ 0 [Pi], we discard the residual imaginary
* part and if arg ~ Pi/2 [Pi], we discard the residual real part. */
std::complex<T> result = std::pow(c, d);
return ApproximationEngine::truncateRealOrImaginaryPartAccordingToArgument(result);
}
template<typename T> MatrixComplex<T> Power::computeOnComplexAndMatrix(const std::complex<T> c, const MatrixComplex<T> n) {
return MatrixComplex<T>::Undefined();
}
template<typename T> MatrixComplex<T> Power::computeOnMatrixAndComplex(const MatrixComplex<T> m, const std::complex<T> d) {
if (m.numberOfRows() != m.numberOfColumns()) {
return MatrixComplex<T>::Undefined();
}
T power = Complex<T>(d).toScalar();
if (std::isnan(power) || std::isinf(power) || power != (int)power || std::fabs(power) > k_maxApproximatePowerMatrix) {
return MatrixComplex<T>::Undefined();
}
if (power < 0) {
MatrixComplex<T> * inverse = m.createInverse();
if (inverse == nullptr) {
return MatrixComplex<T>::Undefined();
}
Complex<T> minusC = Complex<T>(-d);
MatrixComplex<T> result = Power::computeOnMatrixAndComplex(*inverse, minusC);
delete inverse;
return result;
}
MatrixComplex<T> result = MatrixComplex<T>::createIdentity(m.numberOfRows());
// TODO: implement a quick exponentiation
for (int k = 0; k < (int)power; k++) {
if (shouldStopProcessing()) {
return MatrixComplex<T>::Undefined();
}
result = Multiplication::computeOnMatrices<T>(result, m);
}
return result;
}
template<typename T> MatrixComplex<T> Power::computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n) {
return MatrixComplex<T>::Undefined();
}
bool Power::needParenthesisWithParent(const Expression * e) const {
Type types[] = {Type::Power, Type::Factorial};
return e->isOfType(types, 2);
}
ExpressionLayout * Power::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
const Expression * indiceOperand = m_operands[1];
// Delete eventual parentheses of the indice in the pretty print
if (m_operands[1]->type() == Type::Parenthesis) {
indiceOperand = m_operands[1]->operand(0);
}
HorizontalLayout * result = new HorizontalLayout();
result->addOrMergeChildAtIndex(m_operands[0]->createLayout(floatDisplayMode, numberOfSignificantDigits), 0, false);
result->addChildAtIndex(new VerticalOffsetLayout(
indiceOperand->createLayout(floatDisplayMode, numberOfSignificantDigits),
VerticalOffsetLayout::Type::Superscript,
false),
result->numberOfChildren());
return result;
}
int Power::simplificationOrderSameType(const Expression * e, bool canBeInterrupted) const {
int baseComparison = SimplificationOrder(operand(0), e->operand(0), canBeInterrupted);
if (baseComparison != 0) {
return baseComparison;
}
return SimplificationOrder(operand(1), e->operand(1), canBeInterrupted);
}
int Power::simplificationOrderGreaterType(const Expression * e, bool canBeInterrupted) const {
int baseComparison = SimplificationOrder(operand(0), e, canBeInterrupted);
if (baseComparison != 0) {
return baseComparison;
}
Rational one(1);
return SimplificationOrder(operand(1), &one, canBeInterrupted);
}
Expression * Power::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
/* Step 0: get rid of matrix */
if (operand(1)->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
if (operand(0)->type() == Type::Matrix) {
Matrix * mat = static_cast<Matrix *>(editableOperand(0));
if (operand(1)->type() != Type::Rational || !static_cast<const Rational *>(operand(1))->denominator().isOne()) {
return replaceWith(new Undefined(), true);
}
Integer exponent = static_cast<const Rational *>(operand(1))->numerator();
if (mat->numberOfRows() != mat->numberOfColumns()) {
return replaceWith(new Undefined(), true);
}
if (exponent.isNegative()) {
editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
Expression * newMatrix = shallowReduce(context, angleUnit);
Expression * parent = newMatrix->parent();
MatrixInverse * inv = new MatrixInverse(newMatrix, false);
parent->replaceOperand(newMatrix, inv, false);
return inv;
}
if (Integer::NaturalOrder(exponent, Integer(k_maxExactPowerMatrix)) > 0) {
return this;
}
int exp = exponent.extractedInt(); // Ok, because 0 < exponent < k_maxExactPowerMatrix
Matrix * id = Matrix::createIdentity(mat->numberOfRows());
if (exp == 0) {
return replaceWith(id, true);
}
Multiplication * result = new Multiplication(id, mat->clone());
// TODO: implement a quick exponentiation
for (int k = 1; k < exp; k++) {
result->addOperand(mat->clone());
}
replaceWith(result, true);
return result->shallowReduce(context, angleUnit);
}
#endif
/* Step 0: if both operands are true complexes, the result is undefined.
* We can assert that evaluations is a complex as matrix are not simplified */
Complex<float> * op0 = static_cast<Complex<float> *>(operand(0)->privateApproximate(float(), context, angleUnit));
Complex<float> * op1 = static_cast<Complex<float> *>(operand(1)->privateApproximate(float(), context, angleUnit));
bool bothOperandsComplexes = op0->imag() != 0 && op1->imag() != 0;
bool nonComplexNegativeOperand0 = op0->imag() == 0 && op0->real() < 0;
delete op0;
delete op1;
if (bothOperandsComplexes) {
return this;
}
/* Step 1: We handle simple cases as x^0, x^1, 0^x and 1^x first for 2 reasons:
* - we can assert this step that there is no division by 0:
* for instance, 0^(-2)->undefined
* - we save computational time by early escaping for these cases. */
if (operand(1)->type() == Type::Rational) {
const Rational * b = static_cast<const Rational *>(operand(1));
// x^0
if (b->isZero()) {
// 0^0 = undef
if (operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isZero()) {
return replaceWith(new Undefined(), true);
}
/* Warning: in all other case but 0^0, we replace x^0 by one. This is
* almost always true except when x = 0. However, not substituting x^0 by
* one would prevent from simplifying many expressions like x/x->1. */
return replaceWith(new Rational(1), true);
}
// x^1
if (b->isOne()) {
return replaceWith(editableOperand(0), true);
}
}
if (operand(0)->type() == Type::Rational) {
Rational * a = static_cast<Rational *>(editableOperand(0));
// 0^x
if (a->isZero()) {
if (operand(1)->sign() == Sign::Positive) {
return replaceWith(new Rational(0), true);
}
if (operand(1)->sign() == Sign::Negative) {
return replaceWith(new Undefined(), true);
}
}
// 1^x
if (a->isOne()) {
return replaceWith(new Rational(1), true);
}
}
/* Step 2: We look for square root and sum of square roots (two terms maximum
* so far) at the denominator and move them to the numerator. */
Expression * r = removeSquareRootsFromDenominator(context, angleUnit);
if (r) {
return r;
}
if (operand(1)->type() == Type::Rational) {
const Rational * b = static_cast<const Rational *>(operand(1));
// i^(p/q)
if (operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == Ion::Charset::IComplex) {
Rational r = Rational::Multiplication(*b, Rational(1, 2));
return replaceWith(CreateNthRootOfUnity(r))->shallowReduce(context, angleUnit);
}
}
bool letPowerAtRoot = parentIsALogarithmOfSameBase();
if (operand(0)->type() == Type::Rational) {
Rational * a = static_cast<Rational *>(editableOperand(0));
// p^q with p, q rationals
if (!letPowerAtRoot && operand(1)->type() == Type::Rational) {
Rational * exp = static_cast<Rational *>(editableOperand(1));
if (RationalExponentShouldNotBeReduced(a, exp)) {
return this;
}
return simplifyRationalRationalPower(this, a, exp, context, angleUnit);
}
}
// (a)^(1/2) with a < 0 --> i*(-a)^(1/2)
if (!letPowerAtRoot && nonComplexNegativeOperand0 && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->numerator().isOne() && static_cast<const Rational *>(operand(1))->denominator().isTwo()) {
Expression * o0 = editableOperand(0);
Expression * m0 = new Multiplication(new Rational(-1), o0, false);
replaceOperand(o0, m0, false);
m0->shallowReduce(context, angleUnit);
Multiplication * m1 = new Multiplication();
replaceWith(m1, false);
m1->addOperand(new Symbol(Ion::Charset::IComplex));
m1->addOperand(this);
shallowReduce(context, angleUnit);
return m1->shallowReduce(context, angleUnit);
}
// e^(i*Pi*r) with r rational
if (!letPowerAtRoot && isNthRootOfUnity()) {
Expression * m = editableOperand(1);
detachOperand(m);
Expression * i = m->editableOperand(m->numberOfOperands()-1);
static_cast<Multiplication *>(m)->removeOperand(i, false);
if (angleUnit == AngleUnit::Degree) {
const Expression * pi = m->operand(m->numberOfOperands()-1);
m->replaceOperand(pi, new Rational(180), true);
}
Expression * cos = new Cosine(m, false);
m = m->shallowReduce(context, angleUnit);
Expression * sin = new Sine(m, true);
Expression * complexPart = new Multiplication(sin, i, false);
sin->shallowReduce(context, angleUnit);
Expression * a = new Addition(cos, complexPart, false);
cos->shallowReduce(context, angleUnit);
complexPart->shallowReduce(context, angleUnit);
return replaceWith(a, true)->shallowReduce(context, angleUnit);
}
// x^log(y,x)->y if y > 0
if (operand(1)->type() == Type::Logarithm) {
if (operand(1)->numberOfOperands() == 2 && operand(0)->isIdenticalTo(operand(1)->operand(1))) {
// y > 0
if (operand(1)->operand(0)->sign() == Sign::Positive) {
return replaceWith(editableOperand(1)->editableOperand(0), true);
}
}
// 10^log(y)
if (operand(1)->numberOfOperands() == 1 && operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isTen()) {
return replaceWith(editableOperand(1)->editableOperand(0), true);
}
}
// (a^b)^c -> a^(b*c) if a > 0 or c is integer
if (operand(0)->type() == Type::Power) {
Power * p = static_cast<Power *>(editableOperand(0));
// Check is a > 0 or c is Integer
if (p->operand(0)->sign() == Sign::Positive ||
(operand(1)->type() == Type::Rational && static_cast<Rational *>(editableOperand(1))->denominator().isOne())) {
return simplifyPowerPower(p, editableOperand(1), context, angleUnit);
}
}
// (a*b*c*...)^r ?
if (!letPowerAtRoot && operand(0)->type() == Type::Multiplication) {
Multiplication * m = static_cast<Multiplication *>(editableOperand(0));
// (a*b*c*...)^n = a^n*b^n*c^n*... if n integer
if (operand(1)->type() == Type::Rational && static_cast<Rational *>(editableOperand(1))->denominator().isOne()) {
return simplifyPowerMultiplication(m, editableOperand(1), context, angleUnit);
}
// (a*b*...)^r -> |a|^r*(sign(a)*b*...)^r if a rational
for (int i = 0; i < m->numberOfOperands(); i++) {
// a is signed and a != -1
if (m->operand(i)->sign() != Sign::Unknown && (m->operand(i)->type() != Type::Rational || !static_cast<const Rational *>(m->operand(i))->isMinusOne())) {
//if (m->operand(i)->sign() == Sign::Positive || m->operand(i)->type() == Type::Rational) {
Expression * r = editableOperand(1);
Expression * rCopy = r->clone();
Expression * factor = m->editableOperand(i);
if (factor->sign() == Sign::Negative) {
m->replaceOperand(factor, new Rational(-1), false);
factor = factor->setSign(Sign::Positive, context, angleUnit);
} else {
m->removeOperand(factor, false);
}
m->shallowReduce(context, angleUnit);
Power * p = new Power(factor, rCopy, false);
Multiplication * root = new Multiplication(p, clone(), false);
p->shallowReduce(context, angleUnit);
root->editableOperand(1)->shallowReduce(context, angleUnit);
replaceWith(root, true);
return root->shallowReduce(context, angleUnit);
}
}
}
// a^(b+c+...) -> Rational(a^b)*a^c with a and b rational and a != 0
if (!letPowerAtRoot && operand(0)->type() == Type::Rational && !static_cast<const Rational *>(operand(0))->isZero() && operand(1)->type() == Type::Addition) {
Addition * a = static_cast<Addition *>(editableOperand(1));
// Check is b is rational
if (a->operand(0)->type() == Type::Rational) {
const Rational * rationalBase = static_cast<const Rational *>(operand(0));
const Rational * rationalIndex = static_cast<const Rational *>(a->operand(0));
if (RationalExponentShouldNotBeReduced(rationalBase, rationalIndex)) {
return this;
}
Power * p1 = new Power(editableOperand(0), a->editableOperand(0), true); // a^b
Power * p2 = static_cast<Power *>(clone());
static_cast<Addition *>(p2->editableOperand(1))->removeOperand(p2->editableOperand(1)->editableOperand(0), true); // p2 = a^(c+...)
Multiplication * m = new Multiplication(p1, p2, false);
simplifyRationalRationalPower(p1, static_cast<Rational *>(p1->editableOperand(0)), static_cast<Rational *>(p1->editableOperand(1)), context, angleUnit);
replaceWith(m, true);
return m->shallowReduce(context, angleUnit);
}
}
// (a0+a1+...am)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Multinome)
if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition) {
// Exponent n
Rational * nr = static_cast<Rational *>(editableOperand(1));
Integer n = nr->numerator();
n.setNegative(false);
/* if n is above 25, the resulting sum would have more than
* k_maxNumberOfTermsInExpandedMultinome terms so we do not expand it. */
if (Integer(k_maxNumberOfTermsInExpandedMultinome).isLowerThan(n) || n.isOne()) {
return this;
}
int clippedN = n.extractedInt(); // Authorized because n < k_maxNumberOfTermsInExpandedMultinome
// Number of terms in addition m
int m = operand(0)->numberOfOperands();
/* The multinome (a0+a2+...+a(m-1))^n has BinomialCoefficient(n+m-1,n) terms;
* we expand the multinome only when the number of terms in the resulting
* sum has less than k_maxNumberOfTermsInExpandedMultinome terms. */
if (k_maxNumberOfTermsInExpandedMultinome < BinomialCoefficient::compute(static_cast<double>(clippedN), static_cast<double>(clippedN+m-1))) {
return this;
}
Expression * result = editableOperand(0);
Expression * a = result->clone();
for (int i = 2; i <= clippedN; i++) {
if (result->type() == Type::Addition) {
Expression * a0 = new Addition();
for (int j = 0; j < a->numberOfOperands(); j++) {
Multiplication * m = new Multiplication(result, a->editableOperand(j), true);
SimplificationRoot rootM(m); // m need to have a parent when applying distributeOnOperandAtIndex
Expression * expandM = m->distributeOnOperandAtIndex(0, context, angleUnit);
rootM.detachOperands();
if (a0->type() == Type::Addition) {
static_cast<Addition *>(a0)->addOperand(expandM);
} else {
a0 = new Addition(a0, expandM, false);
}
SimplificationRoot rootA0(a0); // a0 need a parent to be reduced.
a0 = a0->shallowReduce(context, angleUnit);
rootA0.detachOperands();
}
result = result->replaceWith(a0, true);
} else {
Multiplication * m = new Multiplication(a, result, true);
SimplificationRoot root(m);
result = result->replaceWith(m->distributeOnOperandAtIndex(0, context, angleUnit), true);
result = result->shallowReduce(context, angleUnit);
root.detachOperands();
}
}
delete a;
if (nr->sign() == Sign::Negative) {
nr->replaceWith(new Rational(-1), true);
return shallowReduce(context, angleUnit);
} else {
return replaceWith(result, true);
}
}
#if 0
/* We could use the Newton formula instead which is quicker but not immediate
* to implement in the general case (Newton multinome). */
// (a+b)^n with n integer -> a^n+?a^(n-1)*b+?a^(n-2)*b^2+...+b^n (Newton)
if (!letPowerAtRoot && operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->denominator().isOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2) {
Rational * nr = static_cast<Rational *>(editableOperand(1));
Integer n = nr->numerator();
n.setNegative(false);
if (Integer(k_maxExpandedBinome).isLowerThan(n) || n.isOne()) {
return this;
}
int clippedN = n.extractedInt(); // Authorized because n < k_maxExpandedBinome < k_maxNValue
Expression * x0 = editableOperand(0)->editableOperand(0);
Expression * x1 = editableOperand(0)->editableOperand(1);
Addition * a = new Addition();
for (int i = 0; i <= clippedN; i++) {
Rational * r = new Rational(static_cast<int>(BinomialCoefficient::compute(static_cast<double>(i), static_cast<double>(clippedN))));
Power * p0 = new Power(x0->clone(), new Rational(i), false);
Power * p1 = new Power(x1->clone(), new Rational(clippedN-i), false);
const Expression * operands[3] = {r, p0, p1};
Multiplication * m = new Multiplication(operands, 3, false);
p0->shallowReduce(context, angleUnit);
p1->shallowReduce(context, angleUnit);
a->addOperand(m);
m->shallowReduce(context, angleUnit);
}
if (nr->sign() == Sign::Negative) {
nr->replaceWith(new Rational(-1), true);
editableOperand(0)->replaceWith(a, true)->shallowReduce(context, angleUnit);
return shallowReduce(context, angleUnit);
} else {
return replaceWith(a, true)->shallowReduce(context, angleUnit);
}
}
#endif
return this;
}
bool Power::parentIsALogarithmOfSameBase() const {
if (parent()->type() == Type::Logarithm && parent()->operand(0) == this) {
// parent = log(10^x)
if (parent()->numberOfOperands() == 1) {
if (operand(0)->type() == Type::Rational && static_cast<const Rational *>(operand(0))->isTen()) {
return true;
}
return false;
}
// parent = log(x^y,x)
if (operand(0)->isIdenticalTo(parent()->operand(1))) {
return true;
}
}
// parent = ln(e^x)
if (parent()->type() == Type::NaperianLogarithm && parent()->operand(0) == this && operand(0)->type() == Type::Symbol && static_cast<const Symbol *>(operand(0))->name() == Ion::Charset::Exponential) {
return true;
}
return false;
}
Expression * Power::simplifyPowerPower(Power * p, Expression * e, Context& context, AngleUnit angleUnit) {
Expression * p0 = p->editableOperand(0);
Expression * p1 = p->editableOperand(1);
p->detachOperands();
Multiplication * m = new Multiplication(p1, e, false);
replaceOperand(e, m, false);
replaceOperand(p, p0, true);
m->shallowReduce(context, angleUnit);
return shallowReduce(context, angleUnit);
}
Expression * Power::simplifyPowerMultiplication(Multiplication * m, Expression * r, Context& context, AngleUnit angleUnit) {
for (int index = 0; index < m->numberOfOperands(); index++) {
Expression * factor = m->editableOperand(index);
Power * p = new Power(factor, r, true); // We copy r and factor to avoid inheritance issues
m->replaceOperand(factor, p, true);
p->shallowReduce(context, angleUnit);
}
detachOperand(m);
return replaceWith(m, true)->shallowReduce(context, angleUnit); // delete r
}
Expression * Power::simplifyRationalRationalPower(Expression * result, Rational * a, Rational * b, Context& context, AngleUnit angleUnit) {
if (b->denominator().isOne()) {
Rational r = Rational::Power(*a, b->numerator());
return result->replaceWith(new Rational(r),true);
}
Expression * n = nullptr;
Expression * d = nullptr;
if (b->sign() == Sign::Negative) {
b->setSign(Sign::Positive);
n = CreateSimplifiedIntegerRationalPower(a->denominator(), b, false, context, angleUnit);
d = CreateSimplifiedIntegerRationalPower(a->numerator(), b, true, context, angleUnit);
} else {
n = CreateSimplifiedIntegerRationalPower(a->numerator(), b, false, context, angleUnit);
d = CreateSimplifiedIntegerRationalPower(a->denominator(), b, true, context, angleUnit);
}
Multiplication * m = new Multiplication(n, d, false);
result->replaceWith(m, true);
return m->shallowReduce(context, angleUnit);
}
Expression * Power::CreateSimplifiedIntegerRationalPower(Integer i, Rational * r, bool isDenominator, Context & context, AngleUnit angleUnit) {
assert(!i.isZero());
assert(r->sign() == Sign::Positive);
if (i.isOne()) {
return new Rational(1);
}
Integer absI = i;
absI.setNegative(false);
Integer factors[Arithmetic::k_maxNumberOfPrimeFactors];
Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors];
Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors);
if (coefficients[0].isMinusOne()) {
/* We could not break i in prime factor (either it might take too many
* factors or too much time). */
r->setSign(isDenominator ? Sign::Negative : Sign::Positive);
return new Power(new Rational(i), r->clone(), false);
}
Integer r1(1);
Integer r2(1);
int index = 0;
while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) {
Integer n = Integer::Multiplication(coefficients[index], r->numerator());
IntegerDivision div = Integer::Division(n, r->denominator());
r1 = Integer::Multiplication(r1, Integer::Power(factors[index], div.quotient));
r2 = Integer::Multiplication(r2, Integer::Power(factors[index], div.remainder));
index++;
}
Rational * p1 = new Rational(r2);
Integer one = isDenominator ? Integer(-1) : Integer(1);
Rational * p2 = new Rational(one, r->denominator());
Power * p = new Power(p1, p2, false);
if (r1.isEqualTo(Integer(1)) && !i.isNegative()) {
return p;
}
Rational * r3 = isDenominator ? new Rational(Integer(1), r1) : new Rational(r1);
Multiplication * m = new Multiplication(r3, p, false);
if (r2.isOne()) {
m->removeOperand(p);
}
if (i.isNegative()) {
Expression * nthRootOfUnity = CreateNthRootOfUnity(*r);
m->addOperand(nthRootOfUnity);
nthRootOfUnity->shallowReduce(context, angleUnit);
}
m->sortOperands(SimplificationOrder, false);
return m;
}
Expression * Power::CreateNthRootOfUnity(const Rational r) {
const Symbol * exp = new Symbol(Ion::Charset::Exponential);
const Symbol * iComplex = new Symbol(Ion::Charset::IComplex);
const Symbol * pi = new Symbol(Ion::Charset::SmallPi);
const Expression * multExpOperands[3] = {iComplex, pi, new Rational(r)};
Multiplication * mExp = new Multiplication(multExpOperands, 3, false);
mExp->sortOperands(SimplificationOrder, false);
return new Power(exp, mExp, false);
#if 0
const Symbol * iComplex = new Symbol(Ion::Charset::IComplex);
const Symbol * pi = new Symbol(Ion::Charset::SmallPi);
Expression * op = new Multiplication(pi, r->clone(), false);
Cosine * cos = new Cosine(op, false);
op = op->shallowReduce(context, angleUnit);
Sine * sin = new Sine(op, true);
Expression * m = new Multiplication(iComplex, sin, false);
sin->shallowReduce(context, angleUnit);
Expression * a = new Addition(cos, m, false);
cos->shallowReduce(context, angleUnit);
const Expression * multExpOperands[3] = {pi, r->clone()};
#endif
}
Expression * Power::shallowBeautify(Context& context, AngleUnit angleUnit) {
// X^-y -> 1/(X->shallowBeautify)^y
if (operand(1)->sign() == Sign::Negative) {
Expression * p = cloneDenominator(context, angleUnit);
Division * d = new Division(new Rational(1), p, false);
p->shallowReduce(context, angleUnit);
replaceWith(d, true);
return d->shallowBeautify(context, angleUnit);
}
if (operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->numerator().isOne()) {
Integer index = static_cast<const Rational *>(operand(1))->denominator();
if (index.isEqualTo(Integer(2))) {
const Expression * sqrtOperand[1] = {operand(0)};
SquareRoot * sqr = new SquareRoot(sqrtOperand, true);
return replaceWith(sqr, true);
}
const Expression * rootOperand[2] = {operand(0)->clone(), new Rational(index)};
NthRoot * nr = new NthRoot(rootOperand, false);
return replaceWith(nr, true);
}
// +(a,b)^c ->(+(a,b))^c
if (operand(0)->type() == Type::Addition || operand(0)->type() == Type::Multiplication) {
const Expression * o[1] = {operand(0)};
Parenthesis * p = new Parenthesis(o, true);
replaceOperand(operand(0), p, true);
}
return this;
}
Expression * Power::cloneDenominator(Context & context, AngleUnit angleUnit) const {
if (operand(1)->sign() == Sign::Negative) {
Expression * denominator = clone();
Expression * newExponent = denominator->editableOperand(1)->setSign(Sign::Positive, context, angleUnit);
if (newExponent->type() == Type::Rational && static_cast<Rational *>(newExponent)->isOne()) {
delete denominator;
return operand(0)->clone();
}
return denominator;
}
return nullptr;
}
bool Power::TermIsARationalSquareRootOrRational(const Expression * e) {
if (e->type() == Type::Rational) {
return true;
}
if (e->type() == Type::Power && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(1))->isHalf()) {
return true;
}
if (e->type() == Type::Multiplication && e->numberOfOperands() == 2 && e->operand(0)->type() == Type::Rational && e->operand(1)->type() == Type::Power && e->operand(1)->operand(0)->type() == Type::Rational && e->operand(1)->operand(1)->type() == Type::Rational && static_cast<const Rational *>(e->operand(1)->operand(1))->isHalf()) {
return true;
}
return false;
}
const Rational * Power::RadicandInExpression(const Expression * e) {
if (e->type() == Type::Rational) {
return nullptr;
} else if (e->type() == Type::Power) {
assert(e->type() == Type::Power);
assert(e->operand(0)->type() == Type::Rational);
return static_cast<const Rational *>(e->operand(0));
} else {
assert(e->type() == Type::Multiplication);
assert(e->operand(1)->type() == Type::Power);
assert(e->operand(1)->operand(0)->type() == Type::Rational);
return static_cast<const Rational *>(e->operand(1)->operand(0));
}
}
const Rational * Power::RationalFactorInExpression(const Expression * e) {
if (e->type() == Type::Rational) {
return static_cast<const Rational *>(e);
} else if (e->type() == Type::Power) {
return nullptr;
} else {
assert(e->type() == Type::Multiplication);
assert(e->operand(0)->type() == Type::Rational);
return static_cast<const Rational *>(e->operand(0));
}
}
Expression * Power::removeSquareRootsFromDenominator(Context & context, AngleUnit angleUnit) {
Expression * result = nullptr;
if (operand(0)->type() == Type::Rational && operand(1)->type() == Type::Rational && (static_cast<const Rational *>(operand(1))->isHalf() || static_cast<const Rational *>(operand(1))->isMinusHalf())) {
/* We're considering a term of the form sqrt(p/q) (or 1/sqrt(p/q)), with
* p and q integers.
* We'll turn those into sqrt(p*q)/q (or sqrt(p*q)/p) . */
Integer p = static_cast<const Rational *>(operand(0))->numerator();
assert(!p.isZero()); // We eliminated case of form 0^(-1/2) at first step of shallowReduce
Integer q = static_cast<const Rational *>(operand(0))->denominator();
// We do nothing for terms of the form sqrt(p)
if (!q.isOne() || static_cast<const Rational *>(operand(1))->isMinusHalf()) {
Power * sqrt = new Power(new Rational(Integer::Multiplication(p, q)), new Rational(1, 2), false);
if (static_cast<const Rational *>(operand(1))->isHalf()) {
result = new Multiplication(new Rational(Integer(1), q), sqrt, false);
} else {
result = new Multiplication(new Rational(Integer(1), p), sqrt, false); // We use here the assertion that p != 0
}
sqrt->shallowReduce(context, angleUnit);
}
} else if (operand(1)->type() == Type::Rational && static_cast<const Rational *>(operand(1))->isMinusOne() && operand(0)->type() == Type::Addition && operand(0)->numberOfOperands() == 2 && TermIsARationalSquareRootOrRational(operand(0)->operand(0)) && TermIsARationalSquareRootOrRational(operand(0)->operand(1))) {
/* We're considering a term of the form
*
* 1/(n1/d1*sqrt(p1/q1) + n2/d2*sqrt(p2/q2))
*
* and we want to turn it into
*
* n1*q2*d1*d2^2*sqrt(p1*q1) - n2*q1*d2*d1^2*sqrt(p2*q2)
* -------------------------------------------------------
* n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1
*/
const Rational * f1 = RationalFactorInExpression(operand(0)->operand(0));
const Rational * f2 = RationalFactorInExpression(operand(0)->operand(1));
const Rational * r1 = RadicandInExpression(operand(0)->operand(0));
const Rational * r2 = RadicandInExpression(operand(0)->operand(1));
Integer n1 = (f1 ? f1->numerator() : Integer(1));
Integer d1 = (f1 ? f1->denominator() : Integer(1));
Integer p1 = (r1 ? r1->numerator() : Integer(1));
Integer q1 = (r1 ? r1->denominator() : Integer(1));
Integer n2 = (f2 ? f2->numerator() : Integer(1));
Integer d2 = (f2 ? f2->denominator() : Integer(1));
Integer p2 = (r2 ? r2->numerator() : Integer(1));
Integer q2 = (r2 ? r2->denominator() : Integer(1));
// Compute the denominator = n1^2*d2^2*p1*q2 - n2^2*d1^2*p2*q1
Integer denominator = Integer::Subtraction(
Integer::Multiplication(
Integer::Multiplication(
Integer::Power(n1, Integer(2)),
Integer::Power(d2, Integer(2))),
Integer::Multiplication(p1, q2)),
Integer::Multiplication(
Integer::Multiplication(
Integer::Power(n2, Integer(2)),
Integer::Power(d1, Integer(2))),
Integer::Multiplication(p2, q1)));
// Compute the numerator
Power * sqrt1 = new Power(new Rational(Integer::Multiplication(p1, q1)), new Rational(1, 2), false);
Power * sqrt2 = new Power(new Rational(Integer::Multiplication(p2, q2)), new Rational(1, 2), false);
Integer factor1 = Integer::Multiplication(
Integer::Multiplication(n1, d1),
Integer::Multiplication(Integer::Power(d2, Integer(2)), q2));
Multiplication * m1 = new Multiplication(new Rational(factor1), sqrt1, false);
Integer factor2 = Integer::Multiplication(
Integer::Multiplication(n2, d2),
Integer::Multiplication(Integer::Power(d1, Integer(2)), q1));
Multiplication * m2 = new Multiplication(new Rational(factor2), sqrt2, false);
Subtraction * numerator = nullptr;
if (denominator.isNegative()) {
numerator = new Subtraction(m2, m1, false);
denominator.setNegative(false);
} else {
numerator = new Subtraction(m1, m2, false);
}
result = new Multiplication(numerator, new Rational(Integer(1), denominator), false);
numerator->deepReduce(context, angleUnit);
}
if (result) {
replaceWith(result, true);
result = result->shallowReduce(context, angleUnit);
}
return result;
}
bool Power::isNthRootOfUnity() const {
if (operand(0)->type() != Type::Symbol || static_cast<const Symbol *>(operand(0))->name() != Ion::Charset::Exponential) {
return false;
}
if (operand(1)->type() != Type::Multiplication) {
return false;
}
if (operand(1)->numberOfOperands() < 2 || operand(1)->numberOfOperands() > 3) {
return false;
}
const Expression * i = operand(1)->operand(operand(1)->numberOfOperands()-1);
if (i->type() != Type::Symbol || static_cast<const Symbol *>(i)->name() != Ion::Charset::IComplex) {
return false;
}
const Expression * pi = operand(1)->operand(operand(1)->numberOfOperands()-2);
if (pi->type() != Type::Symbol || static_cast<const Symbol *>(pi)->name() != Ion::Charset::SmallPi) {
return false;
}
if (numberOfOperands() == 2) {
return true;
}
if (operand(1)->operand(0)->type() == Type::Rational) {
return true;
}
return false;
}
bool Power::RationalExponentShouldNotBeReduced(const Rational * b, const Rational * r) {
if (r->isMinusOne()) {
return false;
}
/* We check that the simplification does not involve too complex power of
* integers (ie 3^999, 120232323232^50) that would take too much time to
* compute:
* - we cap the exponent at k_maxExactPowerMatrix
* - we cap the resulting power at DBL_MAX
* The complexity of computing a power of rational is mainly due to computing
* the GCD of the resulting numerator and denominator. Euclide algorithm's
* complexity is apportionned to the number of decimal digits in the smallest
* integer. */
Integer maxIntegerExponent = r->numerator();
maxIntegerExponent.setNegative(false);
if (Integer::NaturalOrder(maxIntegerExponent, Integer(k_maxExactPowerMatrix)) > 0) {
return true;
}
double index = maxIntegerExponent.approximate<double>();
double powerNumerator = std::pow(std::fabs(b->numerator().approximate<double>()), index);
double powerDenominator = std::pow(std::fabs(b->denominator().approximate<double>()), index);
if (std::isnan(powerNumerator) || std::isnan(powerDenominator) || std::isinf(powerNumerator) || std::isinf(powerDenominator)) {
return true;
}
return false;
}
template std::complex<float> Power::compute<float>(std::complex<float>, std::complex<float>);
template std::complex<double> Power::compute<double>(std::complex<double>, std::complex<double>);
}
|