Blame view

Modif/epsilon-master/liba/src/external/openbsd/e_exp.c 4.94 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  /* @(#)e_exp.c 5.1 93/09/24 */
  /*
   * ====================================================
   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
   *
   * Developed at SunPro, a Sun Microsystems, Inc. business.
   * Permission to use, copy, modify, and distribute this
   * software is freely granted, provided that this notice 
   * is preserved.
   * ====================================================
   */
  
  /* exp(x)
   * Returns the exponential of x.
   *
   * Method
   *   1. Argument reduction:
   *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
   *	Given x, find r and integer k such that
   *
   *               x = k*ln2 + r,  |r| <= 0.5*ln2.  
   *
   *      Here r will be represented as r = hi-lo for better 
   *	accuracy.
   *
   *   2. Approximation of exp(r) by a special rational function on
   *	the interval [0,0.34658]:
   *	Write
   *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
   *      We use a special Remes algorithm on [0,0.34658] to generate 
   * 	a polynomial of degree 5 to approximate R. The maximum error 
   *	of this polynomial approximation is bounded by 2**-59. In
   *	other words,
   *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
   *  	(where z=r*r, and the values of P1 to P5 are listed below)
   *	and
   *	    |                  5          |     -59
   *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 
   *	    |                             |
   *	The computation of exp(r) thus becomes
   *                             2*r
   *		exp(r) = 1 + -------
   *		              R - r
   *                                 r*R1(r)	
   *		       = 1 + r + ----------- (for better accuracy)
   *		                  2 - R1(r)
   *	where
   *			         2       4             10
   *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
   *	
   *   3. Scale back to obtain exp(x):
   *	From step 1, we have
   *	   exp(x) = 2^k * exp(r)
   *
   * Special cases:
   *	exp(INF) is INF, exp(NaN) is NaN;
   *	exp(-INF) is 0, and
   *	for finite argument, only exp(0)=1 is exact.
   *
   * Accuracy:
   *	according to an error analysis, the error is always less than
   *	1 ulp (unit in the last place).
   *
   * Misc. info.
   *	For IEEE double 
   *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
   *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
   *
   * Constants:
   * The hexadecimal values are the intended ones for the following 
   * constants. The decimal values may be used, provided that the 
   * compiler will convert from decimal to binary accurately enough
   * to produce the hexadecimal values shown.
   */
  
  #include "math.h"
  #include "math_private.h"
  
  static const double
  one	= 1.0,
  halF[2]	= {0.5,-0.5,},
  huge	= 1.0e+300,
  twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
  o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
  u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
  ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
  	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
  ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
  	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
  invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
  P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
  
  
  double
  exp(double x)	/* default IEEE double exp */
  {
  	double y,hi,lo,c,t;
  	int32_t k,xsb;
  	u_int32_t hx;
  
  	GET_HIGH_WORD(hx,x);
  	xsb = (hx>>31)&1;		/* sign bit of x */
  	hx &= 0x7fffffff;		/* high word of |x| */
  
      /* filter out non-finite argument */
  	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
              if(hx>=0x7ff00000) {
  	        u_int32_t lx;
  		GET_LOW_WORD(lx,x);
  		if(((hx&0xfffff)|lx)!=0) 
  		     return x+x; 		/* NaN */
  		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
  	    }
  	    if(x > o_threshold) return huge*huge; /* overflow */
  	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
  	}
  
      /* argument reduction */
  	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
  	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
  		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
  	    } else {
  		k  = invln2*x+halF[xsb];
  		t  = k;
  		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
  		lo = t*ln2LO[0];
  	    }
  	    x  = hi - lo;
  	} 
  	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
  	    if(huge+x>one) return one+x;/* trigger inexact */
  	}
  	else k = 0;
  
      /* x is now in primary range */
  	t  = x*x;
  	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  	if(k==0) 	return one-((x*c)/(c-2.0)-x); 
  	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
  	if(k >= -1021) {
  	    u_int32_t hy;
  	    GET_HIGH_WORD(hy,y);
  	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
  	    return y;
  	} else {
  	    u_int32_t hy;
  	    GET_HIGH_WORD(hy,y);
  	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
  	    return y*twom1000;
  	}
  }