6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/* $OpenBSD: b_tgamma.c,v 1.3 2009/10/27 23:59:29 deraadt Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This code by P. McIlroy, Oct 1992;
*
* The financial support of UUNET Communications Services is greatfully
* acknowledged.
*/
#include "math.h"
#include "math_private.h"
/* METHOD:
* x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
* At negative integers, return NaN and raise invalid.
*
* x < 6.5:
* Use argument reduction G(x+1) = xG(x) to reach the
* range [1.066124,2.066124]. Use a rational
* approximation centered at the minimum (x0+1) to
* ensure monotonicity.
*
* x >= 6.5: Use the asymptotic approximation (Stirling's formula)
* adjusted for equal-ripples:
*
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
*
* Keep extra precision in multiplying (x-.5)(log(x)-1), to
* avoid premature round-off.
*
* Special values:
* -Inf: return NaN and raise invalid;
* negative integer: return NaN and raise invalid;
* other x ~< -177.79: return +-0 and raise underflow;
* +-0: return +-Inf and raise divide-by-zero;
* finite x ~> 171.63: return +Inf and raise overflow;
* +Inf: return +Inf;
* NaN: return NaN.
*
* Accuracy: tgamma(x) is accurate to within
* x > 0: error provably < 0.9ulp.
* Maximum observed in 1,000,000 trials was .87ulp.
* x < 0:
* Maximum observed error < 4ulp in 1,000,000 trials.
*/
static double neg_gam(double);
static double small_gam(double);
static double smaller_gam(double);
static struct Double large_gam(double);
static struct Double ratfun_gam(double, double);
/*
* Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
* [1.066.., 2.066..] accurate to 4.25e-19.
*/
#define LEFT -.3955078125 /* left boundary for rat. approx */
#define x0 .461632144968362356785 /* xmin - 1 */
#define a0_hi 0.88560319441088874992
#define a0_lo -.00000000000000004996427036469019695
#define P0 6.21389571821820863029017800727e-01
#define P1 2.65757198651533466104979197553e-01
#define P2 5.53859446429917461063308081748e-03
#define P3 1.38456698304096573887145282811e-03
#define P4 2.40659950032711365819348969808e-03
#define Q0 1.45019531250000000000000000000e+00
#define Q1 1.06258521948016171343454061571e+00
#define Q2 -2.07474561943859936441469926649e-01
#define Q3 -1.46734131782005422506287573015e-01
#define Q4 3.07878176156175520361557573779e-02
#define Q5 5.12449347980666221336054633184e-03
#define Q6 -1.76012741431666995019222898833e-03
#define Q7 9.35021023573788935372153030556e-05
#define Q8 6.13275507472443958924745652239e-06
/*
* Constants for large x approximation (x in [6, Inf])
* (Accurate to 2.8*10^-19 absolute)
*/
#define lns2pi_hi 0.418945312500000
#define lns2pi_lo -.000006779295327258219670263595
#define Pa0 8.33333333333333148296162562474e-02
#define Pa1 -2.77777777774548123579378966497e-03
#define Pa2 7.93650778754435631476282786423e-04
#define Pa3 -5.95235082566672847950717262222e-04
#define Pa4 8.41428560346653702135821806252e-04
#define Pa5 -1.89773526463879200348872089421e-03
#define Pa6 5.69394463439411649408050664078e-03
#define Pa7 -1.44705562421428915453880392761e-02
static const double zero = 0., one = 1.0, tiny = 1e-300;
double
tgamma(double x)
{
struct Double u;
if (x >= 6) {
if(x > 171.63)
return(x/zero);
u = large_gam(x);
return(__exp__D(u.a, u.b));
} else if (x >= 1.0 + LEFT + x0)
return (small_gam(x));
else if (x > 1.e-17)
return (smaller_gam(x));
else if (x > -1.e-17) {
if (x != 0.0)
u.a = one - tiny; /* raise inexact */
return (one/x);
} else if (!finite(x)) {
return (x - x); /* x = NaN, -Inf */
} else
return (neg_gam(x));
}
/*
* We simply call tgamma() rather than bloating the math library
* with a float-optimized version of it. The reason is that tgammaf()
* is essentially useless, since the function is superexponential
* and floats have very limited range. -- das@freebsd.org
*/
float
tgammaf(float x)
{
return tgamma(x);
}
/*
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
*/
static struct Double
large_gam(double x)
{
double z, p;
struct Double t, u, v;
z = one/(x*x);
p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
p = p/x;
u = __log__D(x);
u.a -= one;
v.a = (x -= .5);
TRUNC(v.a);
v.b = x - v.a;
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
t.b = v.b*u.a + x*u.b;
/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
t.b += lns2pi_lo; t.b += p;
u.a = lns2pi_hi + t.b; u.a += t.a;
u.b = t.a - u.a;
u.b += lns2pi_hi; u.b += t.b;
return (u);
}
/*
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
* It also has correct monotonicity.
*/
static double
small_gam(double x)
{
double y, ym1, t;
struct Double yy, r;
y = x - one;
ym1 = y - one;
if (y <= 1.0 + (LEFT + x0)) {
yy = ratfun_gam(y - x0, 0);
return (yy.a + yy.b);
}
r.a = y;
TRUNC(r.a);
yy.a = r.a - one;
y = ym1;
yy.b = r.b = y - yy.a;
/* Argument reduction: G(x+1) = x*G(x) */
for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
t = r.a*yy.a;
r.b = r.a*yy.b + y*r.b;
r.a = t;
TRUNC(r.a);
r.b += (t - r.a);
}
/* Return r*tgamma(y). */
yy = ratfun_gam(y - x0, 0);
y = r.b*(yy.a + yy.b) + r.a*yy.b;
y += yy.a*r.a;
return (y);
}
/*
* Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
*/
static double
smaller_gam(double x)
{
double t, d;
struct Double r, xx;
if (x < x0 + LEFT) {
t = x;
TRUNC(t);
d = (t+x)*(x-t);
t *= t;
xx.a = (t + x);
TRUNC(xx.a);
xx.b = x - xx.a; xx.b += t; xx.b += d;
t = (one-x0); t += x;
d = (one-x0); d -= t; d += x;
x = xx.a + xx.b;
} else {
xx.a = x;
TRUNC(xx.a);
xx.b = x - xx.a;
t = x - x0;
d = (-x0 -t); d += x;
}
r = ratfun_gam(t, d);
d = r.a/x;
TRUNC(d);
r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
return (d + r.a/x);
}
/*
* returns (z+c)^2 * P(z)/Q(z) + a0
*/
static struct Double
ratfun_gam(double z, double c)
{
double p, q;
struct Double r, t;
q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
p = p/q;
t.a = z;
TRUNC(t.a); /* t ~= z + c */
t.b = (z - t.a) + c;
t.b *= (t.a + z);
q = (t.a *= t.a); /* t = (z+c)^2 */
TRUNC(t.a);
t.b += (q - t.a);
r.a = p;
TRUNC(r.a); /* r = P/Q */
r.b = p - r.a;
t.b = t.b*p + t.a*r.b + a0_lo;
t.a *= r.a; /* t = (z+c)^2*(P/Q) */
r.a = t.a + a0_hi;
TRUNC(r.a);
r.b = ((a0_hi-r.a) + t.a) + t.b;
return (r); /* r = a0 + t */
}
static double
neg_gam(double x)
{
int sgn = 1;
struct Double lg, lsine;
double y, z;
y = ceil(x);
if (y == x) /* Negative integer. */
return ((x - x) / zero);
z = y - x;
if (z > 0.5)
z = one - z;
y = 0.5 * y;
if (y == ceil(y))
sgn = -1;
if (z < .25)
z = sin(M_PI*z);
else
z = cos(M_PI*(0.5-z));
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
if (x < -170) {
if (x < -190)
return ((double)sgn*tiny*tiny);
y = one - x; /* exact: 128 < |x| < 255 */
lg = large_gam(y);
lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
lg.a -= lsine.a; /* exact (opposite signs) */
lg.b -= lsine.b;
y = -(lg.a + lg.b);
z = (y + lg.a) + lg.b;
y = __exp__D(y, z);
if (sgn < 0) y = -y;
return (y);
}
y = one-x;
if (one-y == x)
y = tgamma(y);
else /* 1-x is inexact */
y = -x*tgamma(-x);
if (sgn < 0) y = -y;
return (M_PI / (y*z));
}
|