Blame view

Giac_maj/epsilon-giac/poincare/src/permute_coefficient.cpp 1.32 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  #include <poincare/permute_coefficient.h>
  #include <poincare/complex.h>
  
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  PermuteCoefficient::PermuteCoefficient() :
    Function("permute", 2)
  {
  }
  
  Expression::Type PermuteCoefficient::type() const {
    return Type::PermuteCoefficient;
  }
  
  Expression * PermuteCoefficient::cloneWithDifferentOperands(Expression** newOperands,
          int numberOfOperands, bool cloneOperands) const {
    assert(newOperands != nullptr);
    PermuteCoefficient * pc = new PermuteCoefficient();
    pc->setArgument(newOperands, numberOfOperands, cloneOperands);
    return pc;
  }
  
  template<typename T>
  Evaluation<T> * PermuteCoefficient::templatedEvaluate(Context& context, AngleUnit angleUnit) const {
    Evaluation<T> * nInput = m_args[0]->evaluate<T>(context, angleUnit);
    Evaluation<T> * kInput = m_args[1]->evaluate<T>(context, angleUnit);
    T n = nInput->toScalar();
    T k = kInput->toScalar();
    delete nInput;
    delete kInput;
    if (std::isnan(n) || std::isnan(k) || n != (int)n || k != (int)k || n < 0.0f || k < 0.0f) {
  
      return new Complex<T>(Complex<T>::Float(NAN));
    }
    if (k > n) {
      return new Complex<T>(Complex<T>::Float(0));
    }
    T result = 1;
    for (int i = (int)n-(int)k+1; i <= (int)n; i++) {
      result *= i;
    }
    return new Complex<T>(Complex<T>::Float(std::round(result)));
  }
  
  }