Blame view

Giac_maj/epsilon-giac/poincare/src/multiplication.cpp 3.17 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  extern "C" {
  #include <assert.h>
  #include <stdlib.h>
  }
  #include <cmath>
  
  #include <poincare/multiplication.h>
  #include "layout/string_layout.h"
  #include "layout/horizontal_layout.h"
  #include "layout/parenthesis_layout.h"
  
  namespace Poincare {
  
  Expression::Type Multiplication::type() const {
    return Expression::Type::Multiplication;
  }
  
  ExpressionLayout * Multiplication::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
    assert(floatDisplayMode != FloatDisplayMode::Default);
    assert(complexFormat != ComplexFormat::Default);
    ExpressionLayout * children_layouts[3];
    children_layouts[0] = m_operands[0]->createLayout(floatDisplayMode, complexFormat);
    children_layouts[1] = new StringLayout("*", 1);
    children_layouts[2] = m_operands[1]->type() == Type::Opposite ? new ParenthesisLayout(m_operands[1]->createLayout(floatDisplayMode, complexFormat)) : m_operands[1]->createLayout(floatDisplayMode, complexFormat);
    return new HorizontalLayout(children_layouts, 3);
  }
  
  Expression * Multiplication::cloneWithDifferentOperands(Expression** newOperands,
      int numberOfOperands, bool cloneOperands) const {
    assert(numberOfOperands == 2);
    assert(newOperands != nullptr);
    return new Multiplication(newOperands, cloneOperands);
  }
  
  template<typename T>
  Complex<T> Multiplication::compute(const Complex<T> c, const Complex<T> d) {
    return Complex<T>::Cartesian(c.a()*d.a()-c.b()*d.b(), c.b()*d.a() + c.a()*d.b());
  }
  
  template<typename T>
  Evaluation<T> * Multiplication::computeOnComplexAndMatrix(const Complex<T> * c, Evaluation<T> * m) {
    Multiplication mul;
    return mul.computeOnComplexAndComplexMatrix(c, m);
  }
  
  template<typename T>
  Evaluation<T> * Multiplication::computeOnMatrices(Evaluation<T> * m, Evaluation<T> * n) {
    if (m->numberOfColumns() != n->numberOfRows()) {
      return new Complex<T>(Complex<T>::Float(NAN));
    }
    Complex<T> * operands = new Complex<T>[m->numberOfRows()*n->numberOfColumns()];
    for (int i = 0; i < m->numberOfRows(); i++) {
      for (int j = 0; j < n->numberOfColumns(); j++) {
        T a = 0.0f;
        T b = 0.0f;
        for (int k = 0; k < m->numberOfColumns(); k++) {
          Complex<T> mEntry = *(m->complexOperand(i*m->numberOfColumns()+k));
          Complex<T> nEntry = *(n->complexOperand(k*n->numberOfColumns()+j));
          a += mEntry.a()*nEntry.a() - mEntry.b()*nEntry.b();
          b += mEntry.b()*nEntry.a() + mEntry.a()*nEntry.b();
        }
        operands[i*n->numberOfColumns()+j] = Complex<T>::Cartesian(a, b);
      }
    }
    Evaluation<T> * result = new ComplexMatrix<T>(operands, m->numberOfRows(), n->numberOfColumns());
    delete[] operands;
    return result;
  }
  
  template Poincare::Evaluation<float>* Poincare::Multiplication::computeOnComplexAndMatrix<float>(Poincare::Complex<float> const*, Poincare::Evaluation<float>*);
  template Poincare::Evaluation<double>* Poincare::Multiplication::computeOnComplexAndMatrix<double>(Poincare::Complex<double> const*, Poincare::Evaluation<double>*);
  }
  template Poincare::Complex<float> Poincare::Multiplication::compute<float>(Poincare::Complex<float>, Poincare::Complex<float>);
  template Poincare::Complex<double> Poincare::Multiplication::compute<double>(Poincare::Complex<double>, Poincare::Complex<double>);