Blame view

Giac_maj/epsilon-giac/poincare/src/hyperbolic_sine.cpp 1.11 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  #include <poincare/hyperbolic_sine.h>
  #include <poincare/complex.h>
  #include <poincare/subtraction.h>
  #include <poincare/power.h>
  #include <poincare/fraction.h>
  #include <poincare/opposite.h>
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  HyperbolicSine::HyperbolicSine() :
    Function("sinh")
  {
  }
  
  Expression::Type HyperbolicSine::type() const {
    return Type::HyperbolicSine;
  }
  
  Expression * HyperbolicSine::cloneWithDifferentOperands(Expression** newOperands,
          int numberOfOperands, bool cloneOperands) const {
    assert(newOperands != nullptr);
    HyperbolicSine * hs = new HyperbolicSine();
    hs->setArgument(newOperands, numberOfOperands, cloneOperands);
    return hs;
  }
  
  template<typename T>
  Complex<T> HyperbolicSine::compute(const Complex<T> c) {
    if (c.b() == 0) {
      return Complex<T>::Float(std::sinh(c.a()));
    }
    Complex<T> e = Complex<T>::Float(M_E);
    Complex<T> exp1 = Power::compute(e, c);
    Complex<T> exp2 = Power::compute(e, Complex<T>::Cartesian(-c.a(), -c.b()));
    Complex<T> sub = Subtraction::compute(exp1, exp2);
    return Fraction::compute(sub, Complex<T>::Float(2));
  }
  
  }