6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
extern "C" {
#include <assert.h>
#include <string.h>
#include <float.h>
}
#include <cmath>
#include <poincare/fraction.h>
#include <poincare/multiplication.h>
#include "layout/fraction_layout.h"
namespace Poincare {
Expression * Fraction::cloneWithDifferentOperands(Expression** newOperands,
int numberOfOperands, bool cloneOperands) const {
assert(numberOfOperands == 2);
assert(newOperands != nullptr);
return new Fraction(newOperands, cloneOperands);
}
ExpressionLayout * Fraction::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const {
assert(floatDisplayMode != FloatDisplayMode::Default);
assert(complexFormat != ComplexFormat::Default);
return new FractionLayout(m_operands[0]->createLayout(floatDisplayMode, complexFormat), m_operands[1]->createLayout(floatDisplayMode, complexFormat));
}
Expression::Type Fraction::type() const {
return Type::Fraction;
}
template<typename T>
Complex<T> Fraction::compute(const Complex<T> c, const Complex<T> d) {
// We want to avoid multiplies in the middle of the calculation that could overflow.
// aa, ab, ba, bb, min, max = |d.a| <= |d.b| ? (c.a, c.b, -c.a, c.b, d.a, d.b) : (c.b, c.a, c.b, -c.a, d.b, d.a)
// c c.a+c.b*i d.a-d.b*i 1/max (c.a+c.b*i) * (d.a-d.b*i) / max
// - == --------- * --------- * ----- == -------------------------------
// d d.a+d.b*i d.a-d.b*i 1/max (d.a+d.b*i) * (d.a-d.b*i) / max
// (c.a*d.a - c.a*d.b*i + c.b*i*d.a - c.b*i*d.b*i) / max
// == -----------------------------------------------------
// (d.a*d.a - d.a*d.b*i + d.b*i*d.a - d.b*i*d.b*i) / max
// (c.a*d.a - c.b*d.b*i^2 + c.b*d.b*i - c.a*d.a*i) / max
// == -----------------------------------------------------
// (d.a*d.a - d.b*d.b*i^2) / max
// (c.a*d.a/max + c.b*d.b/max) + (c.b*d.b/max - c.a*d.a/max)*i
// == -----------------------------------------------------------
// d.a^2/max + d.b^2/max
// aa*min/max + ab*max/max bb*min/max + ba*max/max
// == ----------------------- + -----------------------*i
// min^2/max + max^2/max min^2/max + max^2/max
// min/max*aa + ab min/max*bb + ba
// == ----------------- + -----------------*i
// min/max*min + max min/max*min + max
// |min| <= |max| => |min/max| <= 1
// => |min/max*x| <= |x|
// => |min/max*x+y| <= |x|+|y|
// So the calculation is guaranteed to not overflow until the last divides as
// long as none of the input values have the representation's maximum exponent.
T aa = c.a(), ab = c.b(), ba = -aa, bb = ab;
T min = d.a(), max = d.b();
if (std::fabs(max) < std::fabs(min)) {
T temp = min;
min = max;
max = temp;
temp = aa;
aa = ab;
ab = temp;
temp = ba;
ba = bb;
bb = temp;
}
T temp = min/max;
T norm = temp*min + max;
return Complex<T>::Cartesian((temp*aa + ab) / norm, (temp*bb + ba) / norm);
}
template<typename T> Evaluation<T> * Fraction::templatedComputeOnComplexAndComplexMatrix(const Complex<T> * c, Evaluation<T> * n) const {
Evaluation<T> * inverse = n->createInverse();
Evaluation<T> * result = Multiplication::computeOnComplexAndMatrix(c, inverse);
delete inverse;
return result;
}
template<typename T> Evaluation<T> * Fraction::templatedComputeOnComplexMatrices(Evaluation<T> * m, Evaluation<T> * n) const {
if (m->numberOfColumns() != n->numberOfColumns()) {
return nullptr;
}
Evaluation<T> * inverse = n->createInverse();
Evaluation<T> * result = Multiplication::computeOnMatrices(m, inverse);
delete inverse;
return result;
}
template Complex<float> Fraction::compute(const Complex<float>, const Complex<float>);
template Complex<double> Fraction::compute(const Complex<double>, const Complex<double>);
}
|