Blame view

Giac_maj/epsilon-giac/poincare/src/derivative.cpp 5.13 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  #include <poincare/derivative.h>
  #include <poincare/symbol.h>
  #include <poincare/complex.h>
  #include <cmath>
  extern "C" {
  #include <assert.h>
  #include <float.h>
  }
  
  namespace Poincare {
  
  Derivative::Derivative() :
    Function("diff", 2)
  {
  }
  
  Expression::Type Derivative::type() const {
    return Type::Derivative;
  }
  
  Expression * Derivative::cloneWithDifferentOperands(Expression** newOperands,
          int numberOfOperands, bool cloneOperands) const {
    assert(newOperands != nullptr);
    Derivative * d = new Derivative();
    d->setArgument(newOperands, numberOfOperands, cloneOperands);
    return d;
  }
  
  template<typename T>
  Evaluation<T> * Derivative::templatedEvaluate(Context& context, AngleUnit angleUnit) const {
    static T min = sizeof(T) == sizeof(double) ? DBL_MIN : FLT_MIN;
    static T max = sizeof(T) == sizeof(double) ? DBL_MAX : FLT_MAX;
    VariableContext<T> xContext = VariableContext<T>('x', &context);
    Symbol xSymbol = Symbol('x');
    Evaluation<T> * xInput = m_args[1]->evaluate<T>(context, angleUnit);
    T x = xInput->toScalar();
    delete xInput;
    Complex<T> e = Complex<T>::Float(x);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    Evaluation<T> * fInput = m_args[1]->evaluate<T>(xContext, angleUnit);
    T functionValue = fInput->toScalar();
    delete fInput;
  
    // No complex/matrix version of Derivative
    if (std::isnan(x) || std::isnan(functionValue)) {
    return new Complex<T>(Complex<T>::Float(NAN));
    }
  
    /* Ridders' Algorithm
     * Blibliography:
     * - Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.
     * (1992). Numerical recipies in C.
     * - Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2,
     * pp. 7576. */
  
    // Initialize hh
    T h = std::fabs(x) < min ? k_minInitialRate : x/1000;
    T f2 = approximateDerivate2(x, h, xContext, angleUnit);
    f2 = std::fabs(f2) < min ? k_minInitialRate : f2;
    T hh = std::sqrt(std::fabs(functionValue/(f2/(std::pow(h,2)))))/10;
    hh = std::fabs(hh) < min ? k_minInitialRate : hh;
    /* Make hh an exactly representable number */
    volatile T temp =  x+hh;
    hh = temp - x;
    /* a is matrix storing the function extrapolations for different stepsizes at
    * different order */
    T a[10][10];
    for (int i = 0; i < 10; i++) {
      for (int j = 0; j < 10; j++) {
        a[i][j] = 1;
      }
    }
    a[0][0] = growthRateAroundAbscissa(x, hh, xContext, angleUnit);
    T err = max;
    T ans = 0;
    T errt = 0;
    /* Loop on i: change the step size */
    for (int i = 1; i < 10; i++) {
      hh /= k_rateStepSize;
      /* Make hh an exactly representable number */
      volatile T temp =  x+hh;
      hh = temp - x;
      a[0][i] = growthRateAroundAbscissa(x, hh, xContext, angleUnit);
      T fac = k_rateStepSize*k_rateStepSize;
      /* Loop on j: compute extrapolation for several orders */
      for (int j = 1; j < 10; j++) {
        a[j][i] = (a[j-1][i]*fac-a[j-1][i-1])/(fac-1);
        fac = k_rateStepSize*k_rateStepSize*fac;
        errt = std::fabs(a[j][i]-a[j-1][i]) > std::fabs(a[j][i]-a[j-1][i-1]) ? std::fabs(a[j][i]-a[j-1][i]) : std::fabs(a[j][i]-a[j-1][i-1]);
        /* Update error and answer if error decreases */
        if (errt < err) {
          err = errt;
          ans = a[j][i];
        }
      }
      /* If higher extrapolation order significantly increases the error, return
       * early */
      if (std::fabs(a[i][i]-a[i-1][i-1]) > 2*err) {
        break;
      }
    }
    /* if the error is too big regarding the value, do not return the answer */
    if (err/ans > k_maxErrorRateOnApproximation || std::isnan(err)) {
      return new Complex<T>(Complex<T>::Float(NAN));
    }
    if (err < min) {
      return new Complex<T>(Complex<T>::Float(ans));
    }
    err = std::pow((T)10, std::floor(std::log10(std::fabs(err)))+2);
    return new Complex<T>(Complex<T>::Float(std::round(ans/err)*err));
  }
  
  template<typename T>
  T Derivative::growthRateAroundAbscissa(T x, T h, VariableContext<T> xContext, AngleUnit angleUnit) const {
    Symbol xSymbol = Symbol('x');
    Complex<T> e = Complex<T>::Float(x + h);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    Evaluation<T> * fInput = m_args[0]->evaluate<T>(xContext, angleUnit);
    T expressionPlus = fInput->toScalar();
    delete fInput;
    e = Complex<T>::Float(x-h);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    fInput = m_args[0]->evaluate<T>(xContext, angleUnit);
    T expressionMinus = fInput->toScalar();
    delete fInput;
    return (expressionPlus - expressionMinus)/(2*h);
  }
  
  template<typename T>
  T Derivative::approximateDerivate2(T x, T h, VariableContext<T> xContext, AngleUnit angleUnit) const {
    Symbol xSymbol = Symbol('x');
    Complex<T> e = Complex<T>::Float(x + h);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    Evaluation<T> * fInput = m_args[0]->evaluate<T>(xContext, angleUnit);
    T expressionPlus = fInput->toScalar();
    delete fInput;
    e = Complex<T>::Float(x);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    fInput = m_args[0]->evaluate<T>(xContext, angleUnit);
    T expression = fInput->toScalar();
    delete fInput;
    e = Complex<T>::Float(x-h);
    xContext.setExpressionForSymbolName(&e, &xSymbol);
    fInput = m_args[0]->evaluate<T>(xContext, angleUnit);
    T expressionMinus = fInput->toScalar();
    delete fInput;
    return expressionPlus - 2.0*expression + expressionMinus;
  }
  
  }