Blame view

Giac_maj/epsilon-giac/poincare/src/cosine.cpp 1.56 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  #include <poincare/cosine.h>
  #include <poincare/hyperbolic_cosine.h>
  #include <poincare/complex.h>
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Cosine::Cosine() :
    Function("cos")
  {
  }
  
  Expression::Type Cosine::type() const {
    return Type::Cosine;
  }
  
  Expression * Cosine::cloneWithDifferentOperands(Expression** newOperands,
          int numberOfOperands, bool cloneOperands) const {
    assert(newOperands != nullptr);
    Cosine * c = new Cosine();
    c->setArgument(newOperands, numberOfOperands, cloneOperands);
    return c;
  }
  
  template<typename T>
  Complex<T> Cosine::compute(const Complex<T> c, AngleUnit angleUnit) {
    assert(angleUnit != AngleUnit::Default);
    if (c.b() == 0) {
      T input = c.a();
      if (angleUnit == AngleUnit::Degree) {
        input *= M_PI/180.0f;
      }
      T result = std::cos(input);
      /* Cheat: openbsd trigonometric functions (cos, sin & tan) are numerical
       * implementation and thus are approximative. The error epsilon is ~1E-7
       * on float and ~1E-15 on double. In order to avoid weird results as
       * cos(90) = 6E-17, we neglect the result when its ratio with the argument
       * (pi in the exemple) is smaller than epsilon.
       * We can't do that for all evaluation as the user can operate on values as
       * small as 1E-308 (in double) and most results still be correct. */
      if (input !=  0 && std::fabs(result/input) <= epsilon<T>()) {
        return Complex<T>::Float(0);
      }
      return Complex<T>::Float(result);
    }
    Complex<T> arg = Complex<T>::Cartesian(-c.b(), c.a());
    return HyperbolicCosine::compute(arg);
  }
  
  }