Blame view

Giac_maj/epsilon-giac/poincare/src/complex_matrix.cpp 2.71 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  extern "C" {
  #include <assert.h>
  #include <stdlib.h>
  }
  #include <poincare/complex_matrix.h>
  #include <poincare/complex.h>
  #include "layout/grid_layout.h"
  #include "layout/bracket_layout.h"
  #include <cmath>
  #include <float.h>
  #include <string.h>
  
  namespace Poincare {
  
  template<typename T>
  ComplexMatrix<T>::ComplexMatrix(const Complex<T> * complexes, int numberOfRows, int numberOfColumns) :
    m_numberOfRows(numberOfRows),
    m_numberOfColumns(numberOfColumns)
  {
    assert(complexes != nullptr);
    m_values = new Complex<T>[numberOfRows*numberOfColumns];
    for (int i = 0; i < numberOfRows*numberOfColumns; i++) {
      m_values[i] = complexes[i];
    }
  }
  
  template<typename T>
  ComplexMatrix<T>::~ComplexMatrix() {
    delete[] m_values;
  }
  
  template<typename T>
  T ComplexMatrix<T>::toScalar() const {
    if (m_numberOfRows != 1 || m_numberOfColumns != 1) {
      return NAN;
    }
    if (m_values[0].b() != 0) {
      return NAN;
    }
    return m_values[0].a();
  }
  
  template<typename T>
  int ComplexMatrix<T>::numberOfRows() const {
    return m_numberOfRows;
  }
  
  template<typename T>
  int ComplexMatrix<T>::numberOfColumns() const {
    return m_numberOfColumns;
  }
  
  template<typename T>
  const Complex<T> * ComplexMatrix<T>::complexOperand(int i) const {
    return &m_values[i];
  }
  
  template<typename T>
  ComplexMatrix<T> * ComplexMatrix<T>::clone() const {
    return new ComplexMatrix<T>(m_values, m_numberOfRows, m_numberOfColumns);
  }
  
  template<typename T>
  ComplexMatrix<T> * ComplexMatrix<T>::cloneWithDifferentOperands(Expression** newOperands,
      int numberOfOperands, bool cloneOperands) const {
    assert(newOperands != nullptr);
    return new ComplexMatrix((Complex<T> *)newOperands[0], m_numberOfRows, m_numberOfColumns);
  }
  
  template<typename T>
  Evaluation<T> * ComplexMatrix<T>::createIdentity(int dim) {
    Complex<T> * operands = new Complex<T> [dim*dim];
    for (int i = 0; i < dim; i++) {
      for (int j = 0; j < dim; j++) {
        if (i == j) {
          operands[i*dim+j] = Complex<T>::Float(1.0);
        } else {
          operands[i*dim+j] = Complex<T>::Float(0.0);
        }
      }
    }
    Evaluation<T> * matrix = new ComplexMatrix<T>(operands, dim, dim);
    delete [] operands;
    return matrix;
  }
  
  template<typename T>
  template <class U>
  Evaluation<U> * ComplexMatrix<T>::templatedEvaluate(Context& context, Expression::AngleUnit angleUnit) const {
    Complex<U> * values = new Complex<U>[m_numberOfRows*m_numberOfColumns];
    for (int i = 0; i < m_numberOfRows*m_numberOfColumns; i++) {
      values[i] = Complex<U>::Cartesian(m_values[i].a(), m_values[i].b());
    }
    Evaluation<U> * result = new ComplexMatrix<U>(values, m_numberOfRows, m_numberOfColumns);
    delete [] values;
    return result;
  
  }
  
  template class Poincare::ComplexMatrix<float>;
  template class Poincare::ComplexMatrix<double>;
  
  }